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Abstract—Interference and collisions greatly limit the through-
put of mesh networks that use contention-based MAC protocols
such as 802.11. Significantly higher throughput is achievable
if transmissions are scheduled. However, traditional methods
to compute optimal schedules are computationally intractable
(unless co-channel interference is neglected). This paperpresents
a practical technique to compute optimal schedules. The resulting
algorithm searches for a low dimensional optimization problem
that has the same solution as the full problem. Such a low dimen-
sional problem is shown to always exist. The resulting algorithm
converges arithmetically fast or geometrically fast, depending
on whether the objective is to maximize the proportional fair
throughput or to maximize the minimum throughput, where the
minimum is over all flows in the network. At each iteration of the
algorithm, a graph theoretic optimization known as the maximum
weighted independent set (MWIS) problem must be solved. While
the general MWIS problem is NP-complete in the worst-case,
we find that the MWIS can be solved efficiently, e.g., on current
computers it can be solved in about 1 sec on a network with 2048
nodes. Finally, the impact of optimal scheduling is examined on
realistic models of mesh networks, where it is found that the
throughput provided by optimal scheduling is between a factor
of 3 and 11 greater than that provided by 802.11’s CSMA/CA,
motivating further research in optimal scheduling.

I. I NTRODUCTION

802.11-based mesh networks are being deployed or planning
to be deployed in over 300 cities [1]. One motivation for
802.11-based mesh networks is that mesh routers can be
densely deployed with relatively low cost. A dense deployment
of routers results in the typical mobile user being close to
at least one router, allowing high data rate communication
between the user and the router. However, a dense distribution
of routers also results in significant interference. Due to the
poor performance of CSMA/CA in environments with high
interference, it is unclear if 802.11 with CSMA/CA will
provide sufficient data rates for future mobile applications. An
alternative to CSMA/CA is to schedule some fraction of the
transmissions.

Achieving high throughput in the face of interference has
been an active area of research for at least 25 years [2].
However, nearly 20 years ago it was shown that computing
optimal schedules ispotentially NP-complete [3]. On the
other hand, it has never been shown that the cases where
the throughput maximization is NP-complete actually arisein
wireless networks. Notably, it has been proved that if there
is no co-channel interference, then optimal schedules can be

computed in polynomial time [4]. Co-channel interference
arises when two nodes transmit simultaneously and, due to
the interference, impede the ability of the receivers to correctly
decode the messages. Under the assumption that co-channel
interference does not arise, tremendous progress has been
made (e.g., [4]–[6], [9], [10], [13]). Unfortunately, withthe
dense deployment of mesh routers, co-channel interference
is expected to be significant. Moreover, schedules generated
under the assumption that co-channel interference does not
arise, tend to perform quite poorly when there is co-channel
interference (e.g., [15]).

This paper presents practical techniques for computing
optimal schedules even when co-channel interference exists.
The ability to compute the schedules of a 2048 node network
densely covering downtown Chicago is demonstrated. There
are two key theoretical results that underpin this approach.

• LettingL be the number of links in the network, a brute-
force approach requires optimization over a space with
2L elements. However, the optimal solution requires no
more thanL elements. If theseL special elements were
somehow known in advance, then the optimization could
be performed over a space withL elements and the result
would be identical to the one found by optimizing over
the space of all elements.

• From a solution of the optimization problem over an
arbitrary set ofL elements, either

– a new set of elements can be found that will improve
the solution, which, in turn, leads to a better set of
elements, and so on,

– or, if no set of better elements exists, then the current
set of elements is optimal.

These observations lead to an algorithm that converges
either arithmetically or geometrically, when the objective is to
maximize the proportionally fair throughput or the minimum
throughput, respectively. However, at each iteration a graph
theoretic problem known as the maximum weighted indepen-
dent set (MWIS) problem must be solved. The MWIS problem
on general graphs is NP-complete, however, as mentioned
above, the MWIS problem is not necessarily NP-complete on
graphs associated with scheduling on wireless networks [16].
This paper demonstrates that the MWIS problem can be solved
in about 1 sec for a practical network with 2048 nodes.

As an example, this paper considers the achievable through-



put of a realistic model of a mesh network in downtown
Chicago, where the model was developed with the UDel Mod-
els urban network simulator [17]. When compared to 802.11
with CSMA/CA, optimal scheduling typically increases the
throughput by a factor of 3 to 11, depending on the density of
the wired gateways. Such large improvements in throughput
justify further research in optimal scheduling.

The remainder of the paper proceeds as follows. In the next
section, the system model, notation, and problem definition
are given. Optimal scheduling is discussed in Section III.
Results from numerical experiments are presented in Section
IV. Concluding remarks are given in Section V. All proofs
can be found in the Appendix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A router-to-routerflow is denoted byφ, with Φ denoting the
set of all suchflows. To improve presentation, it is assumed
that all flows use a single path, however, the extension to
multipath is straightforward. The data rate offlow φ is denoted
fφ, and the path followed byflow φ is denotedP (φ). The set
of all considered paths isP. Using this notation, the total data
rate sent over linkx is

∑
{φ|x∈P (φ)} fφ, where{φ |x ∈ P (φ)}

is the set offlows that cross linkx. All links are directional.
We define an assignment to be a vector v =[
v1 · · · vL

]
, where there areL links in the network

and wherevx ∈ {0, 1} with vx = 1 implying that link x
is active during assignmentv. It is possible to extend this
approach to accommodate links with multiple bit-rates and
multiple transmit powers. Theset of considered assignments is
denoted byV, while theset of all assignments is denoted byV.
In this simple case wherevx ∈ {0, 1}, V has2L assignments.
The size ofV is the main challenge facing optimal scheduling.
Thus, typically, we only consider a subset of all assignments,
i.e., V �V.

The data rate across linkx during assignmentv is denoted
by R (v, x). In generalR (v, x) is a complicated function.
However, here a simple binary relationship is used to define
R (v, x). Specifically,

R (v, x) =

{
Rx if vy = 0 for all y ∈ χ (x)
0 otherwise

, (1)

whereχ (x) is a set of links that conflict with x, i.e.,y ∈ χ (x)
if simultaneous transmissions overx and y are not possible.
Rx is the nominal data rate over link x. Evaluation of
techniques to select the nominal data rate for a link is outside
the scope of this paper. For this paper, letRx be the maximum
data rate that the SNR across linkx can support. Note that this
definition ofR (v, x) neglects the possibility of transmission
errors due to the aggregate interference from several links
not in χ (x). However, as discussed in Section III-F, such
problems can easily be addressed. All computations in this
paper use this technique, and hence the computed capacities
account for multiple interferers. This definition ofR (v, x)
also neglects the possibility thatR (v, x) can take intermediate
values betweenRx and0. For example, in the face of moderate
interference, retransmissions will result in an effectivedata rate
that is belowRx. With a slight modification, this behavior

can be supported by employing a multi-valued definition of
R (v, x). Future work will investigate such modifications.

The set of conflicting link, χ (x), depends on the communi-
cation model. Arguably, theSINR protocol communication
model is the most relevant and is the model used in this
paper. LetSINR (x, y) be the SINR at the receiver of link
x when link y is also active. That is,SINR (x, y) :=
Hx,x/ (Hy,x +N ) whereHx,x is the strength of the signal
transmitted from the transmitter of linkx to the receiver of
link x, Hy,x is the strength of the signal transmitted from
the transmitter of linky to the receiver of linkx, andN
is the strength of the noise. Then, the SINR communication
model specifies thaty ∈ χ (x) if SINR (x, y) < T (x) or
SINR (y, x) < T (y), whereT (x) andT (y) are thresholds
that depend on the modulation schemes.

A schedule is a convex combination of assignments. Specif-
ically, a schedule is a set{αv : v ∈ V} where

∑
v∈V αv ≤ 1

andαv ≥ 0. Thus,αv is the fraction of time that assignment
v is used. With this notation, the total data rate that the
scheduleα provides over linkx is

∑
v∈V αvRxvx. Finally,

the throughput optimization problem is

max
α,f
G (f) (2a)

subject to:
∑

{φ|x∈P (φ)}

fφ ≤
∑

v∈V

αvR (v, x) for each linkx (2b)

∑

v∈V

αv ≤ 1 (2c)

0 ≤ αv for eachv ∈ V, (2d)

wheref is the vector offlow rates. The functionG is referred
to as thethroughput metric. Several different throughput met-
rics are possible. In some cases, the throughput metric is the
network utilityG (f) =

∑
φ∈ΦUφ (fφ), whereUφ is the utility

function forflow φ. Popular utility functions includeUφ (f) =
wφ log (f) [18]–[20] andUφ (f) = wφf

1−γ/ (1− γ) [21],
wherewφ is the administrative weight. Another widely used
throughput metric isG (f) = minφ∈Φwφfφ [22]. This
paper specifically, focuses on the cases whenG (f) =∑

φ∈Φwφ log (fφ) andG (f) = minφ∈Φwφfφ. In the case that
G (f) =

∑
φ∈Φwφ log (fφ), the objective function is continu-

ously differentiable, concave, and increasing. The solvability
of such problems is detailed in [23]. IfG (f) = minφ∈Φwφfφ,
then (2) can be written as a linear programming problem,
which is extensively studied in [24].

In theory, (2) is solvable. However, there is a significant
computational challenge in that ifV is the set of all as-
signments, then the vectorα has 2L elements. Thus, the
size of the space over which the optimization is performed
must be reduced. This idea of considering a reduced space
was considered in [22] and [25], however, the space was
constructed arbitrarily. In this paper the space is constructed
so that the throughput found by optimizing over the reduced
space is the same throughput found by optimizing over the
entire space.



III. OPTIMAL SCHEDULING

A. Introduction

The objective of this section is to compute optimal schedules
by optimizing over a set of considered assignmentV �V. The
key questions are 1). is it possible to reduce the size ofV
without impacting the solution, and 2). if so, how can the set
of considered assignments be constructed so that the value of
(2) with the reduced sizedV is the same or near to the value
whenV =V? The answer to the first question is provided next
and the following subsections focus on the second question.

Theorem 1: There existsV with L assignments such that
the solution to (2) is the same as the solution to (2) when
V = V.

The full proof of this theorem is in Section VI-A. The result,
which follows from Caratheodory’s Theorem (e.g., Theorem
B.6 in [23]), implies that the optimal schedule can be found
by considering a set,V, that is relatively small.

B. Basics

It is well known that Lagrange multiplier theory can be
applied to (2) (e.g., see [23]). Specifically, associated with
each link constraint (2b) is a Lagrange multiplier denoted by
µx, with µ being the vector of such multipliers. Similarly,
associated with the constraint (2c) is a Lagrange multiplier
denoted byλ. Employing the economic interpretation of
Lagrange multipliers,µx can be interpreted as the price/bit
of sending data over linksx, or from the network’s point
of view, µx is the revenue that is collected for each bit that
crosses linkx. Under this interpretation, the revenue generated
by assignmentv is

L∑

x=1

R (v, x)µx.

The multiplierλ can be interpreted as the maximum revenue
generated by any assignment inV. Specifically,

Theorem 2: Let G (f) =
∑

φ∈Φwφ log (fφ) or G (f) =
minφ∈Φwφfφ and letµx be the Lagrange multiplier associated
with constraint (2b) and letλ be the Lagrange multiplier
associated with constraint (2c), then

λ = max
v∈V

L∑

x=1

R (v, x)µx. (3)

The proof of this proposition is in Section VI-A.
Typically, there are many assignments inV that generate

revenueλ. The set of such assignments is referred to as the
set of active assignments and is denotedV∗, i.e.,

V∗ (µ) :=

{

v :
L∑

x=1

R (v, x)µx = max
v∈V

L∑

x=1

R (v, x)µx

}

.

(4)
From Theorem 1, the optimal schedule multiplexes between
a set of no more thanL assignments. These assignments are
contained in the setV∗.

Theorem 3: If v /∈ V∗, thenαv = 0.
The proof of this proposition is in Section VI-A.

Since the revenue generated by active assignments isλ, the
optimal schedule also generates revenueλ. Specifically, letR∗x
be the optimal data rate across linkx, that is

R∗x :=
∑

v∈V

α∗
v
R (v, x) , (5)

whereα∗ specifies the optimal schedule. Then, it can easily
be shown that

λ =
L∑

x=1

R∗xµx.

C. Evaluating Candidate Assignments

A brute force approach to construct a good set of assign-
ments is to start with an arbitrary set of assignments,V, select
an assignmentv+ /∈ V, and evaluate the resulting throughput
with the set of assignmentsv+ ∪ V. However, this approach
is computationally complex in that (2) must be repeatedly
solved. Furthermore, it is not clear if the utility ofv+ is only
apparent when it is added toV along with a particular set of
other assignments. Alternatively, the question of whetheran
assignmentv+ /∈ V will increase the throughput when the set
of considered assignments is changed fromV to v+ ∪ V is
answered by the following theorem.

Theorem 4: For the set of assignmentsV, letµ andλ be the
Lagrange multipliers associated with constraints (2b) and(2c)
when (2) is solved with thisV. Now consider an assignment
v
+ /∈ V, The throughput provided byv+ ∪ V is greater than

that provided byV if and only if

L∑

x=1

R
(
v
+, x

)
µx − λ > 0. (6)

Corollary 5: If Lagrange multipliers that result from opti-
mizing overV are such that there does not exist an assignment
that satisfies (6), then the schedule found by optimizing over
V is optimal.

The proof of Theorem 4 is in Section VI-A.
Theorem 4 provides the main tool for constructing a good

set of assignments. Invoking an economic interpretation ofthe
Lagrange multipliers, Theorem 4 implies that an assignment
v
+ will increase the utility if it generates more revenue per

second than any other assignments in the setV.

D. Algorithm to Maximize the Throughput

Based on Theorem 4, Algorithm 1 can be used to iteratively
add assignments toV such that the added assignment satisfies
(6). The intuition behind this algorithm is to compute the val-
ues of the Lagrange multipliers by solving (2) withV = V (n),
whereV (n) is the set of assignments at thenth iteration. With
these multipliers a new assignment is found that satisfies (6).
If no such assignment exists, then Corollary 5 implies that
the schedule is optimal. If an assignment that satisfies (6) is
found, then we set toV (n+ 1) the union ofV (n) and this
newly found assignment. With this new set of assignments, (2)
is resolved and an improvement of the resulting throughput is
guaranteed by Theorem 4. This process is repeated until no
new assignments can be found (in which case the optimal



schedule has been found) or until the current solution is close
enough to optimal.

The first step of Algorithm 1 requires an initial set of
assignments,V (0). This initial set of assignments must result
in a solution to (2) where theflow rates are non-zero. The
initial set of assignments can be found using a greedy approach
given by Algorithm 2. We note that a wide range of techniques
could be employed to selectV (0). An examination of the
performance of these various techniques is left for future work.

The following indicates the convergence of Algorithm 1.
Theorem 6: Let {(f (n) ,α (n))|n = 1, 2, ...} be the se-

quence of solutions given by Algorithm 1 withρ = 0.
Then limn→∞ (f (n) ,α (n)) = (f (∞) ,α (∞)), the optimal
solution of (2) whenV =V.

Theorem 7: If G (f) = minφ∈Φ fφ, then
(G (f (∞))−G (f (n+ 1))) / (G (f (∞))−G (f (n))) < δ
for some constant0 < δ < 1, that is,G (f (n)) converges to
G (f (∞)) geometrically fast.

Theorem 8: Let A ∈ {0, 1}|Φ|×L with A (φ, x) = 1 if
x ∈ P (φ) and A (φ,x) = 0 otherwise. Suppose that the
null space ofA is empty. Then Algorithm 1 withρ = 0
converges arithmetically whenG (f) =

∑
φ∈Φ log (fφ), that

is, G (f (∞))−G (f (n)) ≤ a/n for somea > 0.
The proofs of these three theorems are in Sections VI-B,

VI-C, and VI-D, respectively.
The condition thatA has an empty null space is satisfied if

no link has the exact same set offlows crossing it. In the case
that the same set offlows do cross two different links, it is
often the case that only one of these links will be a bottleneck
and henceµx will be zero for the non-bottleneck link. Under
this restriction, it is straightforward to show that the conclusion
of Theorem 8 holds.

Theorem 9: Suppose that Algorithm 1 terminates
after n∗ iterations with ρ > 0. If G (f) = minφ∈Φ fφ,
then G(f(∞))−G(f(n∗))

G(f(∞)) < ρ. Whereas, if G (f) =∑
φ∈Φ log (fφ), then G (f (∞)) − G (f (n∗)) =∑
φ∈Φ log (fφ (∞) /fφ (n

∗)) < L log (1 + ρ).
This theorem is proved in Section VI-C.
In our computational experiments we found that Algorithm

1 suffers from numerical issues that reduce the rate of con-
vergence whenn and L are large. It appears that solving (2)
whenG (f) =

∑
φ∈Φ log (fφ) is the source of these numerical

problems. Thus, whenL is large andG (f) =
∑

φ∈Φ log (fφ),
we recommendρ > 0. Specifically, whenL ≤ 512, we have
found thatρ = 0.05 works well, but forL > 512, we use
ρ = 0.15. It is hoped that improvements in solving (2) for
largeL will allow smaller values ofρ.

E. Finding New Assignments

Algorithm 1 changes the challenge of solving (2) over a
large set of assignments to the challenge of finding assign-
ments that solves (6). More specifically, Algorithm 1 requires
solving

max
v∈V

L∑

x=1

R (v, x)µx. (8)

Algorithm 1 Computing an Optimal Schedule
1: Select an initial set of assignmentsV(0), select a level of

accuracyρ ≥ 0, and setn = 0.
2: Solve (2) withV = V(n), and, hence, compute theflow

rates f(n) and the Lagrange multipliesµ(n) and λ(n)
associated with constraints (2b) and (2c), respectively.

3: Search for an assignmentv(n) such that

v(n) = argmax
v∈V

L∑

x=1

R (v, x)µx (n)− λ(n). (7)

4: caseG(f) =minφ∈Φfφ
5: if

∑L
x=1 R(v(n),x)µx(n)−λ(n)

G(f(n)) < ρ
6: Stop.
7: end if
8: caseG(f) =

∑
φ∈Φ log(fφ)

9: if
∑L

x=1R (v(n), x)µx (n)− λ(n) < L log(1 + ρ)
10: Stop.
11: end if
12: setV (n+ 1) = V (n) ∪ v(n)
13: setn = n+ 1, and go to Step 2.

Algorithm 2 Selecting an Initial Set of Assignments
1: SetV empty, and setwx = 0 for all links x.
2: Start an assignmentv with vx = 0 for all x.
3: Randomly select a linkx such thatwx = 0. Setwx = 1

andvx = 1.
4: Randomly select a linky such thatwy = 0 and y /∈⋃

{x|vx=1}

χ(x). Furthermore, check whether each active

link in assignmentv satisfy the desired SINR requirement
(see Section III-F).

5: if such ay existsthen
setwy = 1, vy = 1 and go to Step 4.

6: else
setV = V ∪ v.

7: end if
8: if for all x there exits av ∈ V such thatvx = 1 then

stop.V is the set of initial assignments.
9: else

go to Step 2
10: end if

As will be shown next, solving this maximization is equivalent
to finding the maximum weighted independent set of the
weighted conflict graph.

The utility of the conflict graph for finding schedules has
been demonstrated in several previous works (e.g., [3], [22]).
The conflict graph is constructed as follows. Each link in the
network induces a vertex in the conflict graph. Thus, a link
x in the network is associated with a vertex in the conflict
graph; this vertex is denoted withx, where whetherx refers
to a link in the network or a vertex in the conflict graph is clear
from the context. There is an edge between verticesx andy
if y ∈ χ (x), where, as discussed in Section II,x and links
in χ (x) cannot simultaneously active. The weighted conflict



graph is constructed by assigning the weightRxµx to vertex
x, whereRx is the nominal data rate across linkx andµx is
the Lagrange multiplier associated with constraint (2b).

An independent set (or stable set) of a graph is a set of
vertices where no two vertices in the set are neighbors. Letting
I be an independent set, the weight ofI is the sum of the
weights of the vertices inI. Thus, an independent set of the
conflict graph is a set of links that are not in conflict and hence
able to active simultaneously. Therefore, ifI is an independent
set andv (I) is the assignment generated byI via vx (I) = 1
if x ∈ I, then under assignmentv (I) the data rate across link
x is Rx. Furthermore, the weight ofI is

∑
x∈I Rxµx. By (1),∑

x∈I Rxµx =
∑L

x=1R (v, x)µx. Thus, the goal of solving
(8) is the same as finding the maximum weighted independent
set (MWIS).

Unfortunately, for general graphs, finding the MWIS is NP-
complete. On the other hand, the MWIS problem has been
extensively studied. For example, it is known to be solvable
in polynomial time for many classes of networks including
perfect graphs [26], interval graphs (which arise when a
wireless network is confined to a road) [26], disk graphs
[27], claw-free graphs [28], fork-free graphs [29], trees [30],
sparse random graphs [31], and circle graphs [32]. Moreover,

there has been extensive work on approximating the MWIS
(see [33] for a review) and specialized algorithms have been
developed for exactly computing the MWIS [34], [35], [36],
[40]. However, after evaluating several alternative approaches,
we have found the MWIS can be quickly computed with a
generic integer linear programming (ILP) solver. The MWIS
problem can be formulated as an ILP via

max
v

L∑

x=1

Rxµxvx (9)

subject to:vx + vy ≤ 1 if y ∈ χ (x) (10)

vx ∈ {0, 1} .

In large networks, there are many constraints (10). The compu-
tation time can be dramatically improved if a clique1 decom-
position is used, where we define a clique decomposition to
be a set of cliques{Qi, i = 1, 2, ...M} such that ify ∈ χ (x),
then there is a cliqueQi such thatx ∈ Qi andy ∈ Qi. Then,
(9) becomes

max
v

L∑

x=1

Rxµxvx (11)

subject to:
∑

x∈Qi

vx ≤ 1 for i = 1, 2, ...,M

vx ∈ {0, 1} .

While an optimal clique decomposition might further improve
the computation time, we have found that a simple greedy
clique decomposition results in a factor of ten improvement
over (9). Section IV shows that (11) can be solved in about 1
sec for networks with 2048 nodes (or 1984 links).

1A clique is a set of vertices where there is an edge between each vertex
in the set .

Remark 10: This paper focuses on the SINR binary-conflict
communication model. If co-channel interference does not
arise, then thenode exclusive model can be used. Under the
node exclusive model,y ∈ χ (x) if link’s x transmitter or
receiver are the same asy’s transmitter or receiver. In this
case, the conflict graph is a line-graph, and the MWIS problem
reduces to a maximum weighted matching (WMM) problem
[26]. In the general case, polynomial complexity algorithms
exist for solving the WMM problem (e.g., see [41] for an
O
(
N · L+N2 log (N)

)
complexity algorithm whereN is the

number of nodes andL is the number of links). In the case of
a tree (which is typical for today’s mesh networks), optimal
matching is possible with simple greedy algorithms and mes-
sage passing algorithms [42]. In the case of general topologies,
simple approximation is also possible since maximal weighted
matching is within a factor of two of optimal [43]. There exist
distributed algorithms with approximation ratios of1/2 [44],
[45] and2/3 [46]. However, since the node exclusive model
neglects co-channel interference, the schedules producedunder
this model perform poorly when applied to actual networks
where co-channel interference exists [15].

F. Correcting Multi-Conflicts

The model (1) is a binary model in that it only considers
conflicts between two links. However, conflicts between more
than two links can occur. For example, it is possible that
x /∈ χ (y), x /∈ χ (z), andy /∈ χ (z). Thus, according to the
binary conflict model, linksx, y, andz can all simultaneously
active. However, it is possible that the combined interference
from y andz, results in enough interference such that transmis-
sion across linkx fails with high probability. In this case, we
say that the linksx, y, andz form a multi-conflict. Schedules
that use assignments that contain multi-conflicts will have low
throughput when deployed. Thus, such assignments should
be removed. While the scheme described above removes all
binary conflicts, as described next, we remove multi-conflicts
only as they arise.

Let v+ be an assignment found by solving (8).v+ has
a multi-conflict if there is a linkx with v+x = 1 and links
{yi : i = 1, 2, ...K} with v+yi = 1 and

T (x) > SINR (x, {y1, y2, ..., yK}) :=
Hx,x

∑K
i=1Hyi,x +N

.

(12)

This multi-conflict is defined by the setC = {x} ∪
K⋃

i=1

{yi}.

An assignment that maximizes (8) and yet does not contain
this multi-conflict can be found by solving

max
v

L∑

x=1

Rxµxvx (13)

subject to:
∑

x∈Qi

vx ≤ 1 for i = 1, 2, ...,M

∑

x∈C

vx ≤ |C| − 1

vx ∈ {0, 1} ,



where |C| is the number of links in the setC. Intuitively,
C should be the smallest set that contains the set of links
that forms a multi-conflict at link x. Solving (13) will result
in another assignment. If this assignment also has a multi-
conflict, then the above problem is further modified. Thus,
afterN multi-conflicts are found, new assignments are found
by solving

max
v

L∑

x=1

Rxµxvx (14)

subject to:
∑

x∈Qi

vx ≤ 1 for i = 1, 2, ...,M

∑

x∈Ci

vx ≤ |Ci| − 1 for i = 1, 2, ..., N

vx ∈ {0, 1} ,

whereCi is the ith multi-conflict.
Note that each time a multi-conflict is found, (14) must be

resolved. Thus, a large number of multi-conflicts can result
in significant computation. The next section finds that only a
small number of multi-conflicts arise when forming schedules
in practical mesh networks. Also, note that it is important that
the initial set of assignments constructed with Algorithm 2is
free from multi-conflicts.

IV. NUMERICAL EXPERIMENTS IN OPTIMAL SCHEDULING

A. Experimental Set-Up

As discussed above, determining the optimal throughput has
a theoretical worst-case computational complexity that makes
computing throughput intractable for even small networks.
However, the theoretical worst-case performance provides
little insight into the typical computational complexity that
occurs in mesh networks. Thus, it is imperative that the com-
putational complexity be examined in realistic mesh networks.
To this end, the UDel Models [17] were employed. Along with
a realistic mobility simulator, the UDel Models include a map
builder, a realistic propagation simulator, and large collection
of data and trace files. The propagation simulator is based
on ray-tracing and accounts for reflections off of the ground
and off of buildings, transmission through building walls,and
diffraction around and over buildings [47]. It also accounts
for the impact that different materials have on reflections off
of walls and transmission through walls. Data sets for several
urban areas are available online.

For this investigation, two types of mesh network topologies
were investigated. One class of topologies was generated from
6×6 city block regions of downtown Chicago with lamppost-
mounted radios. In this case, the UDel Models were used to
determine the signal strength between nodes. The 6×6 city
block regions were randomly located in the 2 km2 region.
Various nodes densities were investigated. Specifically, the
number of gateways2 was 1, 2, 3, 6 and the number of wireless
routers was 18, 36, 54, 72, and 90. Ten samples were made for
each number of gateways and wireless routers (200 topologies
in total). In these experiments, all trafficflowed from the
gateways to destinations (i.e., downstream traffic), whereeach

2Gateways are nodes that have wired and wireless interfaces and provide
a connection between the wireless mesh and the Internet.

mesh router in the topology was a destination of aflow. The
routing was a least hop routing, where each link had a SNR of
at least 17.5 dB. Among paths with the same number of hops,
the path selected was the one that had the highest minimum
link SNR, where the minimization is over each hop along the
path. Eachflow originates at the gateway such that the best
route from the gateway to the destination of theflow is no
worse than any route from any other gateway in terms of the
minimum SNR along the route. These topologies are used in
Section IV-C.

A second type of topologies are used in Section IV-B. These
topologies included the outdoor lamppost-mounted nodes
along with indoor infrastructure nodes. In total, 7000 nodes
were placed in the city. From these nodes, a wide range of
topologies can be formed by selecting nodes subject to various
conditions. Here, nodes were selected so that the network
was connected and so that each node had approximately six
neighboring nodes with which it can communicate at 24 Mbps
using 802.11a. This node density resulted in the conflict graph
having a degree of between 15 and 20. Once the nodes were
selected, a set of gateways was selected so that the number of
gateways equals the number of nodes divided by 32. The gate-
ways were selected such that they were uniformly distributed.
Finally, the routing was formed by solving a max-flow problem
that also considers an approximation of interference. This
routing algorithm is similar to the one presented in [6]. For
further details on forming the topologies see [16]. In this way,
topologies were made with 64, 128, 256, 512, 768, 1024, and
2048 nodes. In order to further investigate the computational
complexity, Section IV-B2 also uses a similar set of topologies,
but where the initial set of nodes were uniformly distributed
and either the two-ray propagation model3 or the two-ray
with lognormal shadowing propagation model is used. The
lognormal shadowing used a standard deviation of 4 dB [48].
For each number of nodes and propagation model, 40 sample
topologies were generated. In all, 840 of this type of topologies
were generated.

Note that since we only communicate between gateways
and wireless routers, the topologies are forests (i.e., sets of
trees). Thus, ifN is the total number of nodes, andG is the
number of gateways, thenL = N −G is the number of links.

Finally, 802.11a data rates were used. Specifically, for each
link, the propagation model was used to determine the SNR4.
We selected the nominal data rate so that the 802.11a physical
layer is able to successfully transmit a 1000B packet with this
SNR with probability 0.99. The specific relationship between
SNR and bit-rate used was

6Mbps⇐⇒ 2.5 dB; 12Mbps⇐⇒ 5.5 dB;

18Mbps⇐⇒ 8.5 dB; 24Mbps⇐⇒ 11.5 dB;

36Mbps⇐⇒ 14.5 dB; 48Mbps⇐⇒ 18.5 dB;

54Mbps⇐⇒ 20.5 dB.

3We assumed that the antennas were 1.5 meters above the ground. Thus,
the channel gain isK/d2 for d < 200m andK2002/d4 for d ≥ 200m,
whereK = (λ/ (4π))2 andλ = 5.8 cm, which is the wavelength at 5.13
GHz.

4We assumed 18dBm transmit power and a noisefloor of -92.5 dBm, when
the noise factor is included.
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Fig. 1. Variation in the computed capacity as assignments are added. In (a)
the capacity is the total utility, i.e.,

∑
φ∈Φ log(fφ). In (b) the capacity is

minφ∈Φ fφ. These plots are for a 1024 node (992 link) topology.

We assume that the above relationship between SNR and bit-
rate also holds for SINR, e.g., ifSINR = 11.5 dB, then a
data rate of24Mbps results in a packet success probability of
0.99.

Clearly, there are wide range of parameters used to define
the topology and the bit-rates. An investigation of the compu-
tational complexity and computed throughput as a function of
these parameters is currently under way.

B. Results from Numerical Experiments

1) Number of Iterations until Algorithm 1 Stops: Figure
1 shows how, in the 1024 node (992 link) topology, the
throughput increases as the more assignments are added. The
point of maximum throughput occurs when the solution to
the ILP (11) does not satisfy (6) or the stopping condition
specified in Algorithm 1 is met. Thus, in this case, Algorithm
1 stopped after 186 iterations when the throughput metric was
G (f) =

∑
φ∈Φ log (fφ), and after 191 iterations when the

throughput metric wasG (f) = minφ∈Φ fφ. WhenG (f) =∑
φ∈Φ log (fφ), the stopping condition usedρ = 0.15, while

for the case ofG (f) = minφ∈Φ fφ we usedρ = 0.05. Note
that since the objective functions are different, the values of ρ
should not be compared.

As can be observed, the number of iterations is approxi-
mately the same for both objective functions. Figure 2 explores
this behavior in more detail and shows the average number
of iterations over 40 topology samples. Again, the number
of iterations is approximately the same for both objective
functions. Moreover, since the log-log scale is used, Figure
2 indicates the number of iterations increases polynomially
with the number of links. Note that Figure 2 only shows the
case ofG (f) =

∑
φ∈Φ log (fφ) for topologies up to 1024

nodes. Due to numerical difficulties, we were not able to solve
(2) for 2048 nodes even for a small number of assignments.
Thus, we conclude that whenG (f) =

∑
φ∈Φ log (fφ), the

computational bottleneck is not finding new assignments, but
solving the basic nonlinear optimization (2).

Note that only one assignment is added at each iteration.
Thus, the maximum number of elements inV is the number
of assignments found in Algorithm 2 plus the number of
iterations required by Algorithm 1. Hence, we have achieved
the goal of determining the solution to (2) forV = V̄ by
computing the solution to (2) for a small setV. Note that
the complexity of solving linear and nonlinear optimization
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Fig. 2. Number of iterations until Algorithm 1 stopped. In (a) G(f) =∑
φ∈Φ log(fφ) andρ = 0.15 In (b) G(f) = minφ∈Φ fφ andρ = 0.05.

problems for a small5 sets of variables is well known, and
hence the complexity of solving (2) is not investigated here.

2) Time to Compute a MWIS: While Algorithm 1 converges
after O (L) iterations, each iteration requires solving (14),
which has complexity that is no less than the complexity
of solving a MWIS problem. As mentioned above, in the
worst-case, the MWIS is NP-complete. In order to explore
the computational complexity in practical networks, Figure 3
shows the average time to find a new assignment for topologies
with between 64 and 2048 nodes and for three types of prop-
agation, namely using a ray-tracing-based urban propagation
model, the two-ray propagation model, and the two-ray with
lognormal shadowing propagation model. These times were
found when solving Algorithm 1 withG (f) = minφ∈Φ fφ and
averaged over each topology sample and over each iteration
of Algorithm 1. In the case of Figure 3, each point is from
averaging over 40 topology samples (840 topologies in total).
Figure 3 also shows the 95% confidence intervals.

Figure 3 clearly shows that the time to compute new
assignments is quite small, e.g., for a 2048 node network,
it takes only one second. Figure 3 also indicates that the
computation time grows polynomially with the number of
links. While a detailed examination of the typical computation
time is beyond the scope of this paper, Figure 3 strongly
indicates that finding new assignments is not computationally
difficult in practical networks.

It should be noted that the computation times shown in Fig-
ure 3 were found with a PC with a two 3.0GHz Intel quadcore
processors with 16GB ram. However, each computation only
used a single core. Also, CPLEX v10 was used. Other integer
linear programming solvers may give dramatically different
results.

3) The Number of Multi-Conflicts: As mentioned in Section
III-F, in order for the throughput found by solving (2) to
match the actual throughput when the schedule is deployed,
the assignments used in the schedule must not have any multi-
conflicts. The scheme discussed in Section III-F can be used to
remove the multi-conflicts. However, each time a multi-conflict
is detected and removed, an ILP problem (14) must be solved,
increasing the overall computation time. Figure 4 shows the
average number of multi-conflicts found (and removed) for
various sizes of networks. Roughly, the number of multi-
conflicts grows with the number of nodes and the number
of gateways. Comparing Figure 4 to Figure 2 we observe that

5By small, we mean much less than2L.
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Fig. 3. Computation time to solve the MWIS problem versus thenumber of
nodes in the topology. The vertical bars indicate the 95% confidence intervals.
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Fig. 4. The average number of multi-conflicts detected and removed for
topologies of different sizes.

the number of multi-conflicts is much smaller than the total
number of iterations. On the other hand, failing to remove
multi-conflicts can severely impact the throughput when the
schedule is deployed.

4) Time to Perform Clique Decomposition: As discussed
in Section III-E, the time to find a new assignment is greatly
reduced if a clique decomposition is performed first. Figure5
shows that the time required to perform this decomposition is
on the order to the time it takes to perform one iteration of
Algorithm 1. Since Algorithm 1 requires that tens or hundreds
of iterations are performed, the time to compute a single clique
decomposition is negligible. However, we do not recompute
the clique decomposition every time a multi-conflict is found.

C. Comparison with 802.11 CSMA/CA

With the ability to compute optimal schedules, the im-
pact of optimal schedules on the throughput as compared to
802.11 with CSMA/CA can be investigated. Figure 6 shows
the ratio of the optimal throughput to the throughput that
802.11 CSMA/CA can achieve. Here the throughput metric
is minφ∈Φ fφ. Qualnet was used to estimate the throughput
of 802.11. RTS/CTS and Qualnet’s automatic rate fallback
scheme were used6. The 802.11 CSMA/CA throughput was
determined by sending data to each destination at a constant

6In Qualnet v3.95, by default packets larger than 0B use RTS/CTS. Some
vendors suggest disabling RTS/CTS.
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Fig. 5. Time to compute a clique decomposition as a function of the number
of nodes in the network.

rate (1000 B packets were used). The sending rate was adjusted
until the maximum ofminφ∈Φ fφ was found. Confidence
intervals were generated via bootstrapping [49] to ensure that
the estimated throughput was accurate within 10%.

Figure 6 shows that for networks with a large number of
gateways, optimal scheduling can have a dramatic improve-
ment in the throughput. On the other hand, the simulations
used a standard version of 802.11 CSMA/CA. It is conceivable
that if 802.11 is better tuned (e.g., by tuning CCA [50]) and
a better version of the ARF is used, then the throughput with
802.11 CSMA/CA could be improved and the relative im-
provement provided by optimal scheduling would be reduced.

Figure 6 provides a baseline for the range of improvement
in throughput that optimal scheduling can achieve. While itis
expected that scheduling results in a higher throughput, the de-
gree of the improvement and the dependence on the topology
has been unknown. Figure 6 indicates when there are a large
number of gateways, scheduling tends to provide tremendous
improvements in throughput over 802.11 with CSMA/CA.
The scale of this improvement motivates further research on
scheduling for networks with many gateways and perhaps
supports the extra cost required to deploy hardware capable
of performing scheduled transmissions. For example, improve-
ments of this size are large enough that optimal scheduling
will likely still provide considerably higher throughput when
factors like overhead and errors due to synchronization are
accounted for and CSMA/CA is well tuned.

On the other hand, Figure 6 indicates potential difficulties
with improving the throughput on networks with few gate-
ways. For example, [6] developed a scheme that achieves
at least 1/3 of the optimal throughput (under the condition
that co-channel interference does not arise). Figure 6 indicates
that such a scheme will only slightly improve the throughput
on networks with a small number of gateways. However,
improvements of that size might also be possible by tuning
CSMA/CA.

V. CONCLUSIONS

This paper presented practical techniques for computing
optimal schedules in multihop wireless networks even when
co-channel interference arises. The algorithms can compute
optimal schedules within a few minutes for networks with
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2048 nodes and within a few seconds for networks with 128
nodes.

The performance improvement provided by the optimal
scheduling is significant if there are a large number of
gateways. For example, as compared to 802.11’s CSMA/CA,
optimal scheduling improves performance by a factor between
3 and 11, with the improvement increasing as the density of
gateways increases.

There are a wide range of computational issues that have
yet to be explored. Specific issues to be studied include the
impact of the initial set of assignments and techniques to select
the modulation scheme. Issues related to the link layer, such
as whether and how retransmissions are used, can be found in
[15].

VI. A PPENDIX

A. Proof of Theorems 1, 2, 3 and 4

The proofs here are based on the throughput metricG (f) =∑
φ∈Φwφ log (fφ). Thus, to simplify the notation, only a

single path routing is considered. The extension to multipath
and other throughput metrics is straightforward.

Proof of Theorem 1: The optimal average data rates
over each link is a convex sum of the links rates from
different assignments, that is, the optimal bit-rate over link x
is
∑
v∈V α

∗
v
R (v, x), whereα∗ defines the optimal schedule.

In other words, the set of feasible link bit-rates is a convex
set where the extreme points are some of the rows ofR.
Obviously, the vector of optimal link rates is the vector∑
v∈V α

∗
vR (v, :) ∈ R

L, the space of vectors withL elements.
Due to Caratheodory’s Theorem (e.g., Theorem B.6 in [23]),
a point within a convex hull inRL is specified by at most
L+1 extreme points. That is, there exists a set,V′ with L+1
elements such that

∑

v∈V

α∗
v
R (v, :) =

∑

v∈V′

α′
v
R (v, :) ,

whereα′ might be different set of weights fromα∗. Hence,
the optimal link bit-rates found by optimizing overV, the set
of all possible assignments, can be achieved by only using the
set of assignmentsV ′. Thus, the resulting utility is unchanged
whenV ′ is used as opposed toV.

Now it is shown thatV′ can be selected so thatV′ has
less thanL + 1 elements. Suppose otherwise, that is,V ′

has exactlyL + 1 elements, andV ′ is the smallest set
such that the optimal schedule is inCo ({R (v, :) : v ∈ V ′}),
the convex hull of{R (v, :) : v ∈ V′}. Since the faces of
Co ({R (v, :) : v ∈ V ′}) are defined by no more thanL ex-
treme points, the assumption that the optimal bit-rates cannot
be specified byL points implies that the optimal bit-rates must
be in the interior ofCo ({R (v, :) : v ∈ V ′}). That is, there is
an open set that contains the optimal point and this open set is
in the interior ofCo ({R (v, :) : v ∈ V ′}). For example, letting
r
∗∗ be the vector of optimal bit-rates, the vectorr∗∗+ εr∗∗ is

also in the interior ofCo ({R (v, :) : v ∈ V ′}), whereε > 0
is small enough. Sincer∗∗ is the optimal vector of bit-rates
over the interior ofCo ({R (v, :) : v ∈ V ′}), the utility of r∗∗

must be higher than the utility ofr∗∗ + εr∗∗. However, this
is a contradiction since the link bit-ratesr∗∗ + εr∗∗ result in
uniformly largeflow rates thanr∗∗, which will increase the
throughput. Hence,V ′ can be selected to have fewer thanL+1
elements.

Proof of Theorem 2 and 3: The relevant Lagrange
function is

L (f , α,µ, λ)=−
∑

φ∈Φ

wφ log (fφ) + λ

(
∑

v∈V

αv − 1

)

+
L∑

x=1

µx




∑

{φ:x∈P (φ)}

fφ −
∑

v∈V

αvR (v, x)



 . (15)

After some manipulation, the dual function is found to be

q (µ, λ) = inf
f ,α≥0

−
∑

φ∈Φ

log (fφ)wφ − λ (16)

+
L∑

x=1

µx
∑

{φ:x∈P (φ)}

fφ −
∑

v∈V

αv

(
L∑

x=1

R (v, x)µx − λ

)

.

We immediately note that if
∑L

x=1R (v, x)µx − λ > 0 for
somex, thenq (µ, λ) = −∞. Hence, we restrict the domain
of q, to be such that

∑L
x=1R (v, x)µx − λ ≤ 0. On the

other hand, when solving the dual problem, an objective is to
maximizeq with respect toλ. It is equivalent to minimizing
λ over the domain

∑L
x=1R (v, x)µx − λ ≤ 0. Thus,

λ∗ = max
v∈V

L∑

x=1

R (v, x)µx, (17)

proving Proposition 2. Furthermore, for thisλ, the∑L
x=1R (v, x)µx − λ < 0 for v /∈ V∗, thus, the infimum

in (16) must haveαv = 0 for v /∈ V∗, proving Proposition 3.

Therefore, we can rewrite the dual function as,

q (µ) = inf
f≥0

−
∑

φ∈Φ

log (fφ)wφ (18)

+
L∑

x=1

µx
∑

{φ:x∈P (φ)}

fφ −max
v∈V

L∑

x=1

R (v, x)µx,

whereαv has been eliminated sinceλ∗ results in the infimum
being achieved forαv = 0.



Proof of Theorem 4: We slightly modify (2) to

minG (f)

subject to:
∑

{φ:x∈P (φ)}

fφ −
∑

v∈V

αvR (v, x) ≤ ρx

∑

v∈V

αv − 1 = A,

so (2) is the case whereρ = 0 andA = 0. We will denote
the value of the optimal solution of the above problem as
G∗ (ρ, A). From sensitivity analysis (e.g., [23]), we have

µ∗x =
∂G∗ (ρ,A)

∂ρx
(19)

λ∗ =
∂G∗ (ρ,A)

∂A
. (20)

Equation (19), implies that if the amount of bit-rate that is
applied to linkx is increased by a small amountε, then the
total utility will increase byµ∗xε. It is critical to note that in
this analysis, the bit-rate applied to linkx does not come at
the expense of bit-rates of other links.

Now consider the multiplier,λ∗. The constraint
∑
v∈V αv =

1 +A can be interpreted as the allowing the total bandwidth
of size 1 + A to be shared among all assignments. Thus, if
the bandwidth is increased from size1 to size 1 + ε, then
the utility will increase byλε. Similarly, if the bandwidth is
decreased byε, then the utility will decrease byλε.

While the analysis above assumed that the extra bandwidth
is allocated to linkx without impacting the bit-rate of the
other links, we now consider the more relevant problem
where this extra assignment comes at the expense of other
links. Specifically, if we allocate assignmentv+ with ε of
the bandwidth, then the total bandwidth allocated to the
other assignments must be decreased byε. In particular,
let V ′ = {v1, ...vN} and when optimizing over the set of
assignmentsV ′, let the associated optimal bandwidth allocated
to vi be of size α∗i , where, of course,

∑N
i=1 α

∗
i = 1.

Now in order to allocate bandwidthε to assignmentv+,
we adjust the allocation toα+i = (1− ε)α∗i , and hence the
assignments{v+,v1,v2, ...,vN} are allocated bandwidths of
width {ε, (1− ε)α∗1, (1− ε)α

∗
2, ..., (1− ε)α

∗
N}, respectively.

Based on the discussion above, the change in utility is

ε

(
L∑

x=1

R
(
v
+, x

)
µ∗x − λ

)

, (21)

which is positive if (6) holds.

B. Proof of Theorem 6

Consider the problem

max g (µ, λ) (22)

subject to
L∑

x=1

R (v, x)µx ≤ λ for all v ∈ V

h (µ) = 0

and Algorithm 3 for solving this problem withV =V.
This problem is the dual of (2) for either objective

function by correctly definingg and h. Specifically, if

Algorithm 3
1: Select an initial set of assignmentsV(0), setk = 0.
2: Find µ(k) andλ(k), the solutions to (22) forV = V(k).
3: Find v(k) = argmax

v∈V

∑L
x=1 µx (k)R (v, x)− λ(k).

4: if
∑L

x=1 µx (k)R (v(k))− λ(k) ≤ 0, then
Stop

5: else
SetV(k + 1) = V(k + 1)) ∪ v+(k) Go to Step 2

6: end if

g (µ, λ) = λ and h (µ) =
∑

x µxβx − 1, then (22)
is the dual of (2) whenG (f) = minφ∈Φ fφ. On the

other hand, if g (µ, λ) = −
∑

φ∈Φ log
(

1∑
x∈P (φ) µx

)
+

∑L
x=1 µx

∑
{φ:x∈P (φ)}

1∑
y∈P (φ) µy

− λ and h (µ) ≡ 0, then

(22) is the dual of (2) withG (f) =
∑

φ∈Φ log (fφ). Thus the
following theorem applies to both cases.

Theorem 11: The sequence{(µ (n) , λ (n))|n = 0, 1, ...}
given by Algorithm 3 converges to the optimal solution. Thus,
Algorithm 1 converges to the optimal solution.

Lemma 12: Assume thatG (f) =
∑

φ∈Φ log (fφ). Then the
set{(µ (n) , λ (n)) |n = 1, 2, ...} is a bounded set.

Proof: We first get a lower bound on the optimal value
of G (f). Let vx be the assignment where linkx is active
individually. Set f = minφminx∈P (φ)

R(vx,x)
βx

. ThenG =∑
φ∈Φ log

(
f
)

is a lower bound onG (f (∞)). Let r∗ be the
maximum data rate over any link. ThenG =

∑
φ∈Φ log (r

∗)
is an upper bound onG (f (∞)). Thus, for aflow θ, we must
have thatG < log (f∗θ ) +

∑
φ∈Φ\θ log (r

∗). Hence f∗θ ≥

exp
(
G−

∑
φ∈Φ\θ log (r

∗)
)

. Sincef∗θ = 1/
∑

x∈P (θ) µ
∗
x and

µ∗x ≥ 0, we haveµ∗x < 1/ exp
(
G−

∑
φ∈Φ\θ log (r

∗)
)

.

Moreover, since
∑L

x=1R (v, x)µ
∗
x = λ

∗, we must have that

λ∗ ≤ Lr∗/ exp
(
G−

∑
φ∈Φ\θ log (r

∗)
)

.

Lemma 13: Assume thatG (f) = minφΦ (fφ). Then the set
{(µ (n) , λ (n)) |n = 1, 2, ...} is a bounded set.

Proof: Let
∑L

x=1 µ
∗
xβx = F ∗ ≤ r∗ where r∗ is the

maximum data rate over any link. Thus,µx ≤ r
∗/βx.Also,

λ∗ ≤ r∗.

Proof of Theorem 11: Since
{(µ (n) , λ (n)) : n = 1, 2, ...} is a bounded sequence,
there exists a convergent subsequence. Thus, assume that
{(µ (nj) , λ (nj)) : j = 1, 2, ...} is such a sequence and
limj→∞ (µ (nj) , λ (nj)) =

(
µ′, λ′

)
. Define a sequence of

sets of assignmentsV (nj) := V (0) ∪

nj⋃

i=1

v (i). We will

show that
∑L

x=1R (v, x)µ
′
x < λ

′ for v ∈ V (n). To this
end defineu (µ, λ) := max

v∈V

∑L
x=1R (v, x)µx − λ. It is

straightforward to check thatu is a continuous function. Also,
u (µ (nj) , λ (nj)) =

∑L
x=1R (v (nj) , x)µx (nj) − λ (nj),

and sinceV (nj) is increasing inj,
∑L

x=1R (v, x)µ
′
x−λ

′ ≤ 0
for all v ∈ V (nj) for all j. Therefore, the following string



holds

u
((
µ′, λ′

))

= u ((µ (nj) , λ (nj))) + u
((
µ′, λ′

))

−u ((µ (nj) , λ (nj)))

=
L∑

x=1

R (v (nj) , x)µx (nj)− λ (nj)

+
(
u
((
µ′, λ′

))
− u ((µ (nj) , λ (nj)))

)

≤

(
L∑

x=1

R (v (nj) , x)µx (nj)− λ (nj)

)

−

(
L∑

x=1

R (v (nj) , x)µ
′
x − λ

′

)

+
(
u
((
µ′, λ′

))
− u ((µ (nj) , λ (nj)))

)

=

(
L∑

x=1

R (v (nj) , x) (µx (nj)− µ
′
x)−

(
λ (nj)− λ

′
)
)

+
(
u
((
µ′, λ′

))
− u ((µ (nj) , λ (nj)))

)
.

Since the entries ofR are bounded and sinceu is continuous,
the right-hand side converges to zero asj → ∞. Therefore,
u
((
µ′, λ′

))
≤ 0.

Note that g ((µ (nj) , λ (nj))) is a nondecreasing func-
tion (since more constraints are added at each itera-
tion) and g ((µ (nj) , λ (nj))) ≤ g ((µ (∞) , λ (∞))), where
(µ (∞) , λ (∞)) is the solution to (22) forV = V. Sinceg
is continuous,limj→∞ g ((µ (nj) , λ (nj))) = g

((
µ′, λ′

))
≤

g ((µ (∞) , λ (∞))). Thus
(
µ′, λ′

)
solves (22) forV = V.

And hence,
(
µ′, λ′

)
solves the dual of (22), which has a

unique solution, hence(µ (∞) , λ (∞)) =
(
µ′, λ′

)
. Thus,

all subsequences of{(µ (n) , λ (n)) : j = 1, 2, ...} converge
to
(
µ′, λ′

)
. Hence,limn→∞ (µ (n) , λ (n)) =

(
µ′, λ′

)
. It is

straightforward to show that if{(f (n) ,α (n)) : n = 1, 2, ...}
is the sequence of solutions to the primal problems via
Algorithm 1, thenlimn→∞ (f (n) ,α (n)) = (f (∞) ,α (∞)),
which is the optimal solution to the primal problem.

C. Proof of Theorems 7 and 9

Define∆(n) = argmaxv∈V̄ R (v, :)µ (n) − λ(n). Define
f(n) to be the vector offlow rates found during thenth
iteration of Algorithm 1 and letf(∞) := limn→∞f(n). Thus
G (f (n)) to be the optimal value of (2) after thenth iteration.
And letG (f (∞)) be the solution to the full problem. Define
∆λn = λ (n+ 1)− λ (n) and∆µ (n) = µ (n+ 1) − µ (n).
Let v (n) = argmaxv∈V̄ R (v, :)µ (n). That is,v (n) is the
assignment added at thenth iteration.

Theorem 14: Let G (f) =
∑

φ∈Φ log (fφ), then for f (n)
found by Algorithm 1,G (f (∞))−G (f (n)) ≤ ∆(n).

Proof: The dual of (2) is

maxmin
f

−
∑

φ

log (fφ) +
∑

x

µx
∑

{φ:x∈P (φ)}

fφ − λ

subject to
∑

x

R (v, x)µx ≤ λ for all v ∈ V.

Then as above,((µ (n) ,maxv∈V̄ R (v, :)µ (n))) is a feasible
(but not optimal) solution to the dual of the full problem.

Nonetheless,

G (f (∞))−G (f (n)) ≤ max
v∈V̄

R (v, :)µ (n)− λ (n) .

To proof the above for the case whenG (f) = minφ∈Φ fφ
we rewrite (2) to

min−F (23)

subject to:
∑

v∈V

αvR (v, x) ≥ βxF

∑

v∈V

αv ≤ 1

where βx is the number offlows that pass through linkx
divided by the bit-rate of linkx. Thus, with normalization,
R (v, x) ∈ {0, 1}.

Theorem 15: Let G (f) = minφ∈Φ fφ, then forf (n) found
by Algorithm 1,G (f (∞))−G (f (n)) ≤ ∆(n)

Proof: The dual of (2) withV = V̄ is

minλ

−R (v, :)µ ≥ −λ for all v ∈ V̄
∑

x

µxβx ≥ 1.

Note that (µ (n) ,maxv∈V̄ R (v, :)µ (n)) is a feasible (but
not optimal) solution to the dual of the full problem.
Thus,G (f (∞)) ≤ maxv∈V̄ R (v, :)µ (n) andG (f (∞)) −
G (f (n)) ≤ maxv∈V̄ R (v, :)µ (n)−G (f (n)) = ∆(n).

Theorem 9 follows from Theorems 14 and 15. We now focus
on proving Theorem 7. To this end, the following lemmas are
proved.

Lemma 16: ∆λ (n) ≥ R (v, :)∆µ (n) for all v �= v (n)
andv ∈ V∗ (n+ 1)

Proof: From the identity, λ (n) =
maxv∈V(n)R (v, :)µ (n) = R (v, :)µ (n) for v ∈ V∗ (n),
we have forv ∈ V∗ (n+ 1) andv �= v (n)

λ (n+ 1)− λ (n)

= R (v, :)µ (n+ 1)− max
v∈V(n)

R (v, :)µ (n)

≥ R (v, :)µ (n+ 1)−R (v, :)µ (n) .

Lemma 17: ∆λ (n) = R (v (n) , :)∆µ (n) +∆(n)
Proof: The newly added assignment,v (n), is always

an active assignment in the schedule found in the(n+ 1)th
iteration, i.e., v (n) ∈ V∗ (n+ 1). Thus, λ (n+ 1) =
R (v (n) , :)µ (n+ 1). From the definition of∆(n), we have
−λ (n) = −R (v (n) , :)µ (n) + ∆(n). Thus, λ (n+ 1) −
λ (n) = R (v (n) , :)µ (n+ 1) − R (v (n) , :)µ (n) + ∆(n).

Lemma 18: βT∆µ (n) = 0.
Proof: The Lagrangian for (23) is

L (µ, λ,α, F ) = −F +
∑

x

µx

(

βxF −
∑

v

αvR (v, x)

)

+λ

(
∑

v

αv − 1

)

.



SinceF appears linearly, for the optimal value ofµ we must
have that−1 +

∑
x βxµx = 0. Thus, for alln, βTµ (n) = 1,

and henceβT∆µ ( n) = 0.
Note that the set of active assignmentsV∗ (n+ 1) and the

corresponding matrix of data-rates must be schedulable in the
sense that sufficient data mustflow on each link. This gives
rise to following condition onV∗ (n+ 1) andR.

Condition 19: There exists a vector α with∑
v∈V∗(n+1) αv = 1 andαv > 0 for all v ∈ V∗ (n+ 1) such

that there exists at > 0 such that

αR (:, x) ≥ tβx for all x. (24)

Lemma 20: There exists aq > 0 that is independent of
V∗ (n+ 1) such thatmaxv∈V∗(n+1)\v(n)R (v, :)∆µ (n) ≥
−qR (v (n) , :)∆µ (n).

Proof: Multiplying both sides of (24) by∆µx (n) and
summing results in

L∑

x=1

∆µx (n)
∑

v∈V∗(n+1)

αvR (v, x) ≥ t
L∑

x=1

βx∆µx (n)

and from Lemma 18, we have
∑

v∈V∗(n+1)\v(n)

αv
∑

x

∆µx (n)R (v, x)

+ αv(n)∆µx (n)R (v (n) , x) ≥ 0.

Thus,

max
v∈V∗(n+1)\v(n)

R (v, :)∆µ (n)

≥ −q (R,β)R (v (n) , x)∆µx (n)

whereq (R,β) > 0 is a constant that depends on the vector
α given by Condition 19, and hence depends on the matrix
of active assignmentsV∗ (n+ 1) and the vectorβ. The set of
active assignments is in the set V(β, L) where

V (β, L) :=
{
{0, 1}s×L | s ≤ L, Condition 19 holds

}
,

where s is the number of active assignments, ands ≤
L. Clearly, V(β, L) is a compact set (actually, it is a fi-
nite set). Hence, there exists aq := minR∈V(β,L) q (R,β)
whereq > 0 and thusmaxv∈V∗(n+1)\v(n)R (v, :)∆µ (n) ≥
−q∆µx (n)R (v (n) , x) for anyV∗ (n+ 1) ∈V(β,L).

Lemma 21: ∆λ (n) ≥ δ∆(n) for someδ > 0.
Proof: From Lemmas 16, 17, and 20

∆λ (n) ≥ max
v∈V∗(n+1)\v(n)

R (v, :)∆µ (n)

≥ −qR (v (n) , :)∆µ (n)

= q (∆ (n)−∆λ (n))

∆λ (n) (1 + q) ≥ q∆(n)

∆λ (n) ≥
q

q + 1
∆(n) .

Proof of Theorem 7: Since there is no duality gap,
λ (n) = G (f (n)). Thus, from Lemma 21

G (f (n+ 1))−G (f (n))

∆ (n)
≥ δ.

On the other hand, by Theorem 15,G (f (∞))−G (f (n)) ≤
∆(n). Therefore, we have

G (f (n+ 1))−G (f (n))

G (f (∞))−G (f (n))
≥ δ

(G (f (∞))−G (f (n)))− (G (f (∞))−G (f (n+ 1)))

G (f (∞))−G (f (n))
≥ δ

1−
(G (f (∞))−G (f (n+ 1)))

G (f (∞))−G (f (n))
≥ δ

(G (f (∞))−G (f (n+ 1)))

G (f (∞))−G (f (n))
≤ 1− δ < 1.

Note that in practice, numerical errors limit the accuracy of
the solutions. These errors result inG (f (∞))−G (f (n+ 1))
approaching zero slowly for largen. Thus, if ∆Threshold

is very small, it may take many iterations before∆(n) <
∆Threshold. Thus,∆Threshold should not be to small. While
further research is required to understand the source and
impact of numerical errors, we suspect that errors in channel
gain measurements and node synchronization result in more
significant reduction in actual throughput than using a large
value of∆Threshold.

D. Proof of Theorem 8

Lemma 22: ‖µ (n+ 1)−µ (n)‖ ≥ δ |λ (n+ 1)− λ (n)|
for someδ > 0.

Proof: Recall thatλ (n) = maxv∈V(n)R (v, :)µ (n) and
for v ∈ V∗ (n) we haveλ (n) = R (v, :)µ (n). Let v′ ∈
V∗ (n+ 1) ∩ V (n). Then

R (v′, :)µ (n+ 1)−R (v′, :)µ (n) ≥ λ (n+ 1)− λ (n) .

Since R (v′, x) ∈ {0, 1}, there exists anx such
that µx (n+ 1) − µx (n) ≥ 1

L (λ (n+ 1)− λ (n)), and
‖µ (n+ 1)−µ (n)‖ ≥ 1

L |(λ (n+ 1)− λ (n))|.
Lemma 23: Let A ∈ {0, 1}|Φ|×L with A (φ, x) = 1 if x ∈

P (φ) andA (φ, x) = 0 otherwise. Suppose that the null space
of A is empty. ThenA (φ, :)µ = 1/fφ and there exists aδ > 0
such that‖f (n)− f (n+ 1)‖ ≥ δ ‖µ (n)−µ (n+ 1)‖.

Proof: Since the null space ofA is empty,
all the singular values of A are nonzero. Thus,(
∑

φ∈Φ

(
1

fφ(k)
− 1

fφ(k+1)

)2)1/2
≥ 1

σ ‖µ (k)−µ (k + 1)‖,

whereσ is the smallest singular value ofA.
Recall that the proof of Lemma 12 showed that there exists

a f such thatfφ (n) ≥ f for all n and φ. Direct calcula-

tion shows that|fφ (n)− fφ (n+ 1)| ≥ f
2
∣∣∣ 1
fφ(n)

− 1
fφ(n+1)

∣∣∣.

Thus,‖f (n)− f (n+ 1)‖ ≥
f2

σ ‖µ (k)−µ (k + 1)‖.
Combining the previous lemmas we get the following.
Lemma 24: If the assumption of Lemma

23 holds, then ‖f (n)− f (n+ 1)‖ ≥
δ ‖(µ (n+ 1) , λ (n+ 1))− (µ (n) , λ (n))‖ for someδ ≥ 0.

Proof of Theorem 8: 7Define u (µ, λ) :=
max

v∈V

∑L
x=1R (v, x)µx − λ. Let (µ (0) , λ (0))

be the multipliers that result from solving (2)

7This proof is based on a proof in [51].



with V = {v : vx = 1 for exact onex}. Let
λo = max

v∈V

∑L
x=1R (v, x)µx (0). Then,

u ((µ (0) , 2λo)) = −λo. Thus, for eachn, there exists
a γ (n) ∈ [0, 1] such that

0 = u (γ (n) (µ (n) , λ (n)) + (1− γ (n)) (µ (0) , 2λo)) .
(25)

From (25),

0 = u (γ (n) (µ (n) , λ (n)) + (1− γ (n)) (µ (0) , 2λo))

≤ γ (n)u (µ (n) , λ (n)) + (1− γ (n))u (µ (0) , 2λo) ,

where the inequality is implied by the convexity ofu. There-
fore,

u (µ (n) , λ (n)) ≥ −
(1− γ (n))

γ (n)
u (µ (0) , 2λo) .

Sincev (n) ∈ V∗ (n+ 1), we haveR (v (n) , :)µ (n+ 1) −
λ (n+ 1) = 0. Also, u ((µ (n) , λ (n))) =
R (v (n) , :)µ (n+ 1)− λ (n+ 1). Therefore,

−
(1− γ (n))

γ (n)
u (µ (0) , 2λo)

≤ u (µ (n) , λ (n))

= R (v (n) , :)µ (n)− λ (n)

− (R (v (n) , :)µ (n+ 1)− λ (n+ 1))

= R (v (n) , :) (µ (n)−µ (n+ 1))− (λ (n)− λ (n+ 1))

≤ r∗ ‖(µ (n+ 1) , λ (n+ 1))− (µ (n) , λ (n))‖ ,

wherer∗ is the highest data rate across any link, and hence
R (v, x) ≤ r∗. From the above and Lemma 24 we have

‖f (n)− f (n+ 1)‖ ≥ −
δ (1− γ (n))

γ (n)
u (µ (0) , 2λo)

≥ −δ (1− γ (n))u (µ (0) , 2λo)

for someδ > 0. Or

(1− γ (n)) ≤
‖f (n)− f (n+ 1)‖

−δu (µ (0) , 2λo)
. (26)

Corresponding to the point(µ (0) , 2λo), defineflow rates
f̃ where f̃φ = 1∑

x∈P(φ) µx(0)
. Clearly, this set of data rates

is suboptimal but feasible. Similarly,f (n) is suboptimal but
feasible. Hence,γ (n) f (n) + (1− γ (n)) f is suboptimal but
feasible. Therefore,

−G (f (∞)) ≤ −G
(
γ (n) f (n) + (1− γ (n)) f̃

)
,

wheref (∞) is the vector of optimalflow rates. Then

(−G (f (∞)))− (−G (f (n))) (27)

≤
(
−G

(
γ (n) f (n) + (1− γ (n)) f̃

))
− (−G (f (n)))

≤ K
∥∥∥γ (n) f (n) + (1− γ (n)) f̃ − f (n)

∥∥∥

= K (1− γ (n))
∥∥∥f (n)− f̃

∥∥∥ ,

whereK = max
f∈{f|f≤fφ≤r∗ } ‖∇G (f)‖ and∇G (f) is the

gradient ofG at f andf is the lower bound on theflow rates
given in Lemma 12.

Combining (26) and (27) yields,

(−G (f (∞)))− (−G (f (n))) (28)

≤
K

−δu (µ (0) , 2λo)
‖f (n)− f (n+ 1)‖

∥∥∥f (n)− f̃
∥∥∥

Define D (n) := (−G (f (∞))) − (−G (f (n))). Thus, (28)
implies

D (n) ≤ K1 ‖f (n)− f (n+ 1)‖ , (29)

whereK1 = K
−δu(µ(0),2λo)

max{f|f≤fφ≤r∗ }

∥∥∥f − f̃
∥∥∥.

On the other hand, over the domain
{
f
∣∣f ≤ fφ ≤ r∗

}
,∑

φ∈Φ log (fφ) is a strongly convex function (see Proposition
B.5 in [23]). Thus,

D (n)−D (n+ 1) (30)

= (−G (f (n+ 1)))− (−G (f (n)))

≥ ρ ‖f (n)− f (n+ 1)‖2

for someρ > 0.
From (29) and (30),

D (n)2 ≤ K2
1 ‖f (n)− f (n+ 1)‖

2 ≤
K2
1

ρ
(D (n)−D (n+ 1)) ,

or
D (n+ 1) ≤ D (n)−

ρ

K2
1

D (n)2 .

As shown in [52],

1

D (n+ 1)
≥

1

D (n)

1

1− ρ
K2
1
D (n)

=
1

D (n)

∞∑

i=0

(
ρ

K2
1

D (n)

)i

≥
1

D (n)

(
1 +

ρ

K2
1

D (n)

)
=

1

D (n)
+
ρ

K2
1

.

Using induction, we have,

1

D (n)
≥

1

D (0)
+ n

ρ

K2
1

,

or
D (n) ≤

1
1

D(0) + n
ρ
K2
1

≤
1

n ρ
K2
1

.

Thus,

G (f (∞))−G (f (n)) ≤
K2
1

ρ

1

n
.
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