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Abstract—Interference and collisions greatly limit the through- computed in polynomial time [4]. Co-channel interference
put of mesh networks that use contention-based MAC protocal  arises when two nodes transmit simultaneously and, due to
such as 802.11. Significantly higher throughput is achievdé the interference, impede the ability of the receivers toedty
if transmissions are scheduled. However, traditional methds ! .
to compute optimal schedules are computationally intracthle Qecode the messages. U_nder the assumption that co-channel
(unless co-channel interference is neglected). This pappresents interference does not arise, tremendous progress has been
a practical technique to compute optimal schedules. The redting made (e.g., [4]-[6], [9], [10], [13]). Unfortunately, witthe
algorithm searches for a low dimensional optimization prottem  dense deployment of mesh routers, co-channel interference
that has the same solution as the full problem. Such a low dinte is expected to be significant. Moreover, schedules gerterate

sional problem is shown to always exist. The resulting algotiim der th tion that h | interf d i
converges arithmetically fast or geometrically fast, depeding under the assumpiion that co-channel interierence does no

on whether the objective is to maximize the proportional fai ~ arise, tend to perform quite poorly when there is co-channel
throughput or to maximize the minimum throughput, where the interference (e.g., [15]).

”:i“i“?t‘ﬁm is over ﬁ":hﬂowst_i“ th? “_etV‘{F’fkkAt each itt?]ration ofthe  This paper presents practical techniques for computing
algorithm, a graph theoretic optimization known as the maxmum - i - :
weighted independent set (MWIS) problem must be solved. Wi optlmal_ _s;chedules even when co-channel interferencesexist
the general MWIS problem is NP-complete in the worst-case, 1ne ability to compute the SChe‘_jUIes (_)f a 2048 node network
we find that the MWIS can be solved efficiently, e.g., on curren densely covering downtown Chicago is demonstrated. There

computers it can be solved in about 1 sec on a network with 2048 are two key theoretical results that underpin this approach

nodes. Finally, the impact of optimal scheduling is examirng on . . .
realistic models of mesh networks, where it is found that the ® Letting L be the number of links in the network, a brute-

throughput provided by optimal scheduling is between a faabr force approach requires optimization over a space with
of 3 and 11 greater than that provided by 802.11's CSMA/CA, 2l elements. However, the optimal solution requires no
motivating further research in optimal scheduling. more thanL elements. If thesd, special elements were
somehow known in advance, then the optimization could
|. INTRODUCTION be performed over a space withelements and the result

would be identical to the one found by optimizing over
the space of all elements.

From a solution of the optimization problem over an
arbitrary set ofL elements, either

802.11-based mesh networks are being deployed or planning
to be deployed in over 300 cities [1]. One motivation for
802.11-based mesh networks is that mesh routers can be
densely deployed with relatively low cost. A dense deploytme

of routers results in the typical mobile user being close to ~ — &new setof elements can be found that will improve
at least one router, allowing high data rate communication the solution, which, in turn, leads to a better set of
between the user and the router. However, a dense distributi elements, and so on, _

of routers also results in significant interference. Duehi® t — or, if no set of better elements exists, then the current
poor performance of CSMA/CA in environments with high set of elements is optimal.

interference, it is unclear if 802.11 with CSMA/CA will These observations lead to an algorithm that converges
provide sufficient data rates for future mobile applicasiodn either arithmetically or geometrically, when the objeetis to
alternative to CSMA/CA is to schedule some fraction of thenaximize the proportionally fair throughput or the minimum
transmissions. throughput, respectively. However, at each iteration gplyra
Achieving high throughput in the face of interference hakeoretic problem known as the maximum weighted indepen-
been an active area of research for at least 25 years [@ntset (MWIS) problem must be solved. The MWIS problem
However, nearly 20 years ago it was shown that computiog general graphs is NP-complete, however, as mentioned
optimal schedules igotentially NP-complete [3]. On the above, the MWIS problem is not necessarily NP-complete on
other hand, it has never been shown that the cases wh@i@phs associated with scheduling on wireless networks [16
the throughput maximization is NP-complete actually aimse This paper demonstrates that the MWIS problem can be solved
wireless networks. Notably, it has been proved that if theiie about 1 sec for a practical network with 2048 nodes.
is no co-channel interference, then optimal schedules ean b As an example, this paper considers the achievable through-



put of a realistic model of a mesh network in downtowecan be supported by employing a multi-valued definition of
Chicago, where the model was developed with the UDel Modk (v, z). Future work will investigate such modifications.
els urban network simulator [17]. When compared to 802.11The set of cofiicting link, x («), depends on the communi-
with CSMA/CA, optimal scheduling typically increases th&ation model. Arguably, th&IN R protocol communication
throughput by a factor of 3 to 11, depending on the density afodel is the most relevant and is the model used in this
the wired gateways. Such large improvements in throughpdper. LetSINR (z,y) be the SINR at the receiver of link
justify further research in optimal scheduling. x when link y is also active. That iSSINR (z,y) =
The remainder of the paper proceeds as follows. In the next, ./ (H, ., + N) where H, , is the strength of the signal
section, the system model, notation, and problem definitismansmitted from the transmitter of link to the receiver of
are given. Optimal scheduling is discussed in Section Ilink z, H, , is the strength of the signal transmitted from
Results from numerical experiments are presented in Sectipe transmitter of linky to the receiver of linkz, and A/
IV. Concluding remarks are given in Section V. All proofds the strength of the noise. Then, the SINR communication

can be found in the Appendix. model specifies thay € x (z) if SINR (z,y) < T (z) or
SINR (y,z) < T (y), whereT (z) andT (y) are thresholds
ll. SYSTEM MODEL AND PROBLEM FORMULATION that depend on the modulation schemes.

_ . . A schedule is a convex combination of assignments. Specif-
A router-to-routeflow is denoted by, with & denoting the ically, a schedule is a sdtw, : v € V} where>" ., oy < 1

set of all suchlows. T(.) Improve presentation, It Is assumeq,, ay > 0. Thus,ay, is the fraction of time that assignment
that all flows use a single path, however, the extension fo

. . ; . v is used. With this notation, the total data rate that the
muItlpzt?hls str?hlgfh;[:‘orwzrg. The d_atz rat(?[fhg\]/\;qb IS dTehnotecti schedulea: provides over linkz is )" ., ay R,v,. Finally,
for an € path followe ﬁOW‘f’ IS denote (¢). The se the throughput optimization problem is
of all considered paths iB. Using this notation, the total data

rate sentover linke is -, . p )y fo. Where{¢ |z € P (¢) }
is the set offlows that cross Iinf@. All links are directional.

We define an assignment to be a vectorv = Ig?fXG(f) (23)
[v1 --- wg |, where there ard. links in the network subject to:
and wherev, € {0,1} with v, = 1 implying that link = ,
is active during issignmem. It is possible to extend this Y. fo<) oavR(v,x) for eachlinkz  (2b)
approach to accommodate links with multiple bit-rates and {?l#€P(#)} vev
multiple transmit powers. Theet of considered assignments is Z ay <1 (2¢)
denoted by, while theset of all assignmentsis denoted by . vey
In this simple case where, € {0, 1}, V has2! assignments. 0 < ay for eachv € V, (2d)

The size of) is the main challenge facing optimal scheduling.

Thus, typically, we only consider a subset of all assignsientvheref is the vector offlow rates. The functiod is referred

e,V GV to as thethroughput metric. Several different throughput met-
The data rate across link during assignment is denoted rics are possible. In some cases, the throughput metrieis th

by R(v,z). In generalR(v,z) is a complicated function. network utility G (f) = > opew Us (fo), whereUy is the utility

However, here a simple binary relationship is used to defifgnction forflow ¢. Popular utility functions includ& (f) =

R (v, ). Specifically, wy log (f) [18]-[20] and Uy (f) = wyf'~7/(1—7) [21],
Ry if v, = 0 for all y € y () wherew, is the administrative weight. Another widely used
R(v,z) :{ OZthevr@\/N;e YEXW (1) throughput metric isG(f) = mingeqwyf, [22]. This

paper specifically, focuses on the cases whe(f) =
wherey (z) is a set of links that cdiict with z, i.e.,y € x (z) D seca We log (fo) andG (f) = minges wy fo. In the case that
if simultaneous transmissions overandy are not possible. G (f) = >_ 4wy log (fs), the objective function is continu-
R, is the nominal data rate over link z. Evaluation of ously differentiable, concave, and increasing. The sdlitsab
techniques to select the nominal data rate for a link is datsiof such problems is detailed in [23]. @ (f) = mingee we fo,
the scope of this paper. For this paper,figtbe the maximum then (2) can be written as a linear programming problem,
data rate that the SNR across linkcan support. Note that this which is extensively studied in [24].
definition of R (v, z) neglects the possibility of transmission In theory, (2) is solvable. However, there is a significant
errors due to the aggregate interference from several link@mputational challenge in that ¥ is the set of all as-
not in x (z). However, as discussed in Section Ill-F, suckignments, then the vectax has 2” elements. Thus, the
problems can easily be addressed. All computations in tliize of the space over which the optimization is performed
paper use this technique, and hence the computed capacitiest be reduced. This idea of considering a reduced space
account for multiple interferers. This definition @t (v,2) was considered in [22] and [25], however, the space was
also neglects the possibility th&t(v, ) can take intermediate constructed arbitrarily. In this paper the space is conterl
values betweer®, and0. For example, in the face of moderateso that the throughput found by optimizing over the reduced
interference, retransmissions will result in an effectlega rate space is the same throughput found by optimizing over the
that is belowR,. With a slight modification, this behavior entire space.



I1l. OPTIMAL SCHEDULING Since the revenue generated by active assignmentstige
optimal schedule also generates revehuspecifically, letR’

A. Introduction . ) ;
o ] o . be the optimal data rate across limkthat is
The objective of this section is to compute optimal schezxlule

by optimizing over a set of considered assignment). The R, = Z ayR(v,z), (%)
key questions are 1). is it possible to reduce the siz& of vev
without impacting the solution, and 2). if so, how can the sgihere o* specifies the optimal schedule. Then, it can easily
of considered assignments be constructed so that the vRlu§® shown that
(2) with the reduced sizelt is the same or near to the value L
wheny =V? The answer to the first question is provided next A= ZR;-HI-
and the following subsections focus on the second question. z=1
Theorem 1. There existsy with L assignments such that ) i ]
the solution to (2) is the same as the solution to (2) whén Evaluating Candidate Assignments
V=Y. A brute force approach to construct a good set of assign-
The full proof of this theorem is in Section VI-A. The resultments is to start with an arbitrary set of assignmenisselect
which follows from Caratheodory’'s Theorem (e.g., Theoremn assignment™ ¢ V, and evaluate the resulting throughput
B.6 in [23]), implies that the optimal schedule can be foundith the set of assignments™ U V. However, this approach
by considering a sel/, that is relatively small. is computationally complex in that (2) must be repeatedly
solved. Furthermore, it is not clear if the utility of" is only
apparent when it is added 1 along with a particular set of
other assignments. Alternatively, the question of whetner
It is well known that Lagrange multiplier theory can beyssignment* ¢ V will increase the throughput when the set
applied to (2) (e.g., see [23]). Specifically, associatethwiof considered assignments is changed friomo v UV is
each link constraint (2b) is a Lagrange multiplier denotgd tanswered by the following theorem.
e With g being the vector of such multipliers. Similarly, Theorem 4: For the set of assignmen¥s let . and\ be the
associated with the constraint (2c) is a Lagrange multiplieagrange multipliers associated with constraints (2b) @)
denoted byA. Employing the economic interpretation ofwhen (2) is solved with thi3’. Now consider an assignment
Lagrange multipliersy:,, can be interpreted as the price/bit,+ ¢ ), The throughput provided byt UV is greater than
of sending data over links;, or from the network's point that provided byV if and only if
of view, p,, is the revenue that is collected for each bit that L
crosses linke. Under this interpretation, the revenue generated +
by assignment’ is ;R (v*2) pe = A>0. ©)

B. Basics

L Corollary 5: If Lagrange multipliers that result from opti-
Z R(v,2) g mizing overV are such that there does not exist an assignment
o=l that satisfies (6), then the schedule found by optimizing ove
The multiplier A can be interpreted as the maximum revenug is optimal.
generated by any assignmentlin Specifically, The proof of Theorem 4 is in Section VI-A.

Theorem 2: Let G (f) = > ,cq welog(fy) or G(f) = Theorem 4 provides the main tool for constructing a good
mingee we f4 and letu,, be the Lagrange multiplier associatedet of assignments. Invoking an economic interpretatiahef
with constraint (2b) and let be the Lagrange multiplier Lagrange multipliers, Theorem 4 implies that an assignment
associated with constraint (2c), then vt will increase the utility if it generates more revenue per
second than any other assignments in thelset

L
A= max R(v,z) p,. 3)
VeV D. Algorithm to Maximize the Throughput
The proof of this proposition is in Section VI-A. Based on Theorem 4, Algorithm 1 can be used to iteratively

Typically, there are many assignments)inthat generate add assignments 3 such that the added assignment satisfies
revenue)\. The set of such assignments is referred to as t{@). The intuition behind this algorithm is to compute théva
set of active assignments and is denot&d i.e., ues of the Lagrange multipliers by solving (2) with=V (n),

L L whereV (n) is the set of assignments at theh iteration. With
V* () = {V : ZR(V’x) p, =max S R(v,z) M;} _ these multipliers a new assignment is found that satisfigs (6
—= VEV If no such assignment exists, then Corollary 5 implies that
(4) the schedule is optimal. If an assignment that satisfiess(6) i
From Theorem 1, the optimal schedule multiplexes betwefsund, then we set t&’ (n + 1) the union ofV (n) and this
a set of no more thai assignments. These assignments arewly found assignment. With this new set of assignmenjs, (2
contained in the sey*. is resolved and an improvement of the resulting throughput i
Theorem 3: If v ¢ V*, thena, = 0. guaranteed by Theorem 4. This process is repeated until no
The proof of this proposition is in Section VI-A. new assignments can be found (in which case the optimal



schedule has been found) or until the current solution isecloAlgorithm 1 Computing an Optimal Schedule

enough to optimal. 1:
The first step of Algorithm 1 requires an initial set of
assignments)’ (0). This initial set of assignments must result 2:

in a solution to (2) where thélow rates are non-zero. The
initial set of assignments can be found using a greedy approa
given by Algorithm 2. We note that a wide range of techniquess:
could be employed to seledt (0). An examination of the
performance of these various techniques is left for futusekw
The following indicates the convergence of Algorithm 1.
Theorem 6: Let {(f (n),a(n))|n=1,2,...} be the se-

guence of solutions given by Algorithm 1 witp = 0. 4:
Thenlimy, s (f (n) , (n)) = (£ (c0),  (c0)), the optimal >
solution of (2) when =V. 3;

Theorem7: If G (f) = minges fy,  then 8:
(G(f(00) ~ G (f(n+1)/(G(f () ~G(E(n) < &
for some constand < § < 1, that is, G (f (n)) converges to ¥
G (f (c0)) geometrically fast. ig

Theorem 8: Let A € {0,1}/**F with A (¢,2) = 1 if
x € P(¢) and A(¢,x) = 0 otherwise. Suppose that the
null space ofA is empty. Then Algorithm 1 withp = 0

12:
13:

Select an initial set of assignmentg0), select a level of
accuracyp > 0, and setr = 0.

Solve (2) withY = V(n), and, hence, compute thew
ratesf(n) and the Lagrange multiplieg(n) and A(n)
associated with constraints (2b) and (2c), respectively.
Search for an assignmen{n) such that

L

v(n) = argmax Y R(v,z) py (n) = A(n).

(7
=1
caseG(f) = mingea fy
if 2=t ROV(n).0)p, (n)=A(n)
G(f(n))
Stop
end if
caseG(f) = > yeq log(fo)
it S0y R (v(n),2) p, (n) = A(n) < Llog(1+ p)
Stop.
end if
setV(n+1)=V(n)Uv(n)
setn =n + 1, and go to Step 2.

<p

converges arithmetically whe&' (f) = >, 4 log (f5), that

is, G (f (00)) — G (f (n)) < a/n for somea > 0.

Algorithm 2 Selecting an Initial Set of Assignments

The proofs of these three theorems are in Sections VI-B;
VI-C, and VI-D, respectively. 2

The condition thatd has an empty null space is satisfied if 5.
no link has the exact same setftdws crossing it. In the case
that the same set dfows do cross two different links, it is ,
often the case that only one of these links will be a bottlknec
and hence:, will be zero for the non-bottleneck link. Under
this restriction, it is straightforward to show that the clusion
of Theorem 8 holds.

Theorem 9: Suppose that Algorithm 1 terminates >
after n* iterations withp > 0. If G(f) = minges f5,

: SetV empty, and setv, = 0 for all links z.

Start an assignment with v, = 0 for all x.
Randomly select a link: such thatw, = 0. Setw, =1
andv, = 1.

: Randomly select a linky such thatw, = 0 andy ¢

U

x|vgy=1
I{in‘k in e}lssignmemv satisfy the desired SINR requirement
(see Section llI-F).
if such ay existsthen
setw, =1, v, =1 and go to Step 4.

x(x). Furthermore, check whether each active

then GE-CE@D) , Whereas, if G(f) = © else

G(£(c0)) setY =VUv
Soealog(fy), then G(f() — G(EM)) = % '
> sew 108 (fp (00) / fo (n*)) < Llog (1 + p). :

This theorem is proved in Section VI-C.

In our computational experiments we found that Algorithm
1 suffers from numerical issues that reduce the rate of con-
vergence whem and L are large. It appears that solving (2)l ]

8: if for all = there exits av € V such thatv, = 1 then

stop.V is the set of initial assignments.

9: else

go to Step 2

0: end if

whenG (f) = 3° ;4 log (fy) is the source of these numerical—
problems. Thus, whef is large and~ (f) = >, 5 log (f5),
we recommeng > 0. Specifically, whenl. < 512, we have

found thatp = 0.05 works well, but forL > 512, we use As will be shown next, solving this maximization is equivale
p = 0.15. It is hoped that improvements in solving (2) forto finding the maximum weighted independent set of the

large L will allow smaller values ofp.

weighted cofiict graph.

The utility of the cofflict graph for finding schedules has
been demonstrated in several previous works (e.g., [3]).[22

E. Finding New Assignments

The corflict graph is constructed as follows. Each link in the

Algorithm 1 changes the challenge of solving (2) over B€work induces a vertex in the dint graph. Thus, a link
large set of assignments to the challenge of finding assigh/n the network is associated with a vertex in the ftioh
ments that solves (6). More specifically, Algorithm 1 regair 9raph this vertex is denoted witlr, where whether refers

to a link in the network or a vertex in the ciiat graph is clear
from the context. There is an edge between verticesd y

if y € x(z), where, as discussed in Section dl,and links
in x () cannot simultaneously active. The weighted ftioh

solving

L
max » " R(v, ) ji,. ®)

vev i



graph is constructed by assigning the weighiy., to vertex Remark 10: This paper focuses on the SINR binary-tia
x, whereR, is the nominal data rate across limkand ., is communication model. If co-channel interference does not
the Lagrange multiplier associated with constraint (2b).  arise, then thenode exclusive model can be used. Under the
An independent set (or stable set) of a graph is a setmgde exclusive modely € x (z) if link’s x transmitter or
vertices where no two vertices in the set are neighborsingett receiver are the same ags transmitter or receiver. In this
I be an independent set, the weight Iofs the sum of the case, the cdtict graph is a line-graph, and the MWIS problem
weights of the vertices id. Thus, an independent set of theeduces to a maximum weighted matching (WMM) problem
conflict graph is a set of links that are not in ¢bet and hence [26]. In the general case, polynomial complexity algorighm
able to active simultaneously. Therefore[ ifs an independent exist for solving the WMM problem (e.g., see [41] for an
set andv (1) is the assignment generated byia v, (I) =1 O (N - L+ N?log (N)) complexity algorithm wheréV is the
if € I, then under assignment(I) the data rate across linknumber of nodes and is the number of links). In the case of
z is R,. Furthermore, the weight dfis >~ _, R.u,. By (1), a tree (which is typical for today’s mesh networks), optimal
> ver Rty = Zf-:l R (v,z) p,. Thus, the goal of solving matching is possible with simple greedy algorithms and mes-
(8) is the same as finding the maximum weighted independ&age passing algorithms [42]. In the case of general tofespg
set (MWIS). simple approximation is also possible since maximal weidht
Unfortunately, for general graphs, finding the MWIS is NPMatching is within a factor of two of optimal [43]. There exis
complete. On the other hand, the MWIS problem has begligtributed algorithms with approximation ratios bf2 [44],
extensively studied. For example, it is known to be solvabl45] and2/3 [46]. However, since the node exclusive model
in polynomial time for many classes of networks including€glects co-channel interference, the schedules produnet
perfect graphs [26], interval graphs (which arise when this model perform poorly when applied to actual networks
wireless network is confined to a road) [26], disk graph¥here co-channel interference exists [15].
[27], claw-free graphs [28], fork-free graphs [29], tre@9]]
sparse random graphs [31], and circle graphs [32]. Moreover Correcting Multi-Confficts

there has been extensive work on approximating the MWISThe model (1) is a binary model in that it only considers
(see [33] for a review) and specialized algorithms have begsnflicts between two links. However, cfiicts between more
developed for exactly computing the MWIS [34], [35], [36]than two links can occur. For example, it is possible that
[40]. However, after evaluating several alternative apph@s, 4 ¢ \ (y), = ¢ x (z), andy ¢ x (z). Thus, according to the
we have found the MWIS can be quickly computed with Binary corlict model, linksz, 3, andz can all simultaneously
generic integer linear programming (ILP) solver. The MWI@ctive. However, it is possible that the combined interfege

problem can be formulated as an ILP via from y andz, results in enough interference such that transmis-
I sion across link: fails with high probability. In this case, we
maXZRzuzvz (9) Ssay that the linksz, y, andz form a multi-corflict. Schedules
v o= that use assignments that contain multi{tiots will have low
subject tow, + v, < 1if y € x (x) (10) throughput when. deployed. Thus, sugh assignments should
ve € {0,1}. be removed. While the scheme described above removes all

binary corlicts, as described next, we remove multi-fimts

In large networks, there are many constraints (10). The com@nly as they arise. _ _

tation time can be dramatically improved if a clijugecom- ~ Let v be an assignment found by solving (8)F has
position is used, where we define a clique decomposition domulti-corflict if there is a linkz with v = 1 and links
be a set of clique§Q;, i = 1,2,...M} such that ify € y (z), {%i:i=12,..K} with v =1 and

then there is a cliqué); such thatr € @); andy € Q;. Then,

9) becomes H; .
( ) T(x)>SINR(x7{y17y277yK}) = K :

. SK Hyw+ N
(12)
max Z Ry, vy (11) K
z=1 This multi-corflict is defined by the sef = {z} U U {v:}-

subject to: Y " v, <1fori=1,2,..,M _ o i1 _
An assignment that maximizes (8) and yet does not contain

zEQ; . 4 X X
vy € {0,1}. this multi-corflict can be found by solving
L
While an optimal clique decomposition might further impeov ma‘XZRzﬂxvm (13)
the computation time, we have found that a simple greedy pp—
cligue decomposition results in a factor of ten improvement subject to: Z v.<1fori=1.92. .. M

over (9). Section IV shows that (11) can be solved in about 1

. . TEQ;
sec for networks with 2048 nodes (or 1984 links).
1A clique is a set of vertices where there is an edge betweem \&rtex z€C

in the set . vy €{0,1},



where |C| is the number of links in the sef'. Intuitively, mesh router in the topology was a destination dfoav. The

C should be the smallest set that contains the set of linksuting was a least hop routing, where each link had a SNR of
that forms a multi-cofiict at link z. Solving (13) will result at least 17.5 dB. Among paths with the same number of hops,
in another assignment. If this assignment also has a muttie path selected was the one that had the highest minimum
corflict, then the above problem is further modified. Thudink SNR, where the minimization is over each hop along the

after N multi-conflicts are found, new assignments are foungath. Eachflow originates at the gateway such that the best

by solving . route from the gateway to the destination of tf@wv is no

worse than any route from any other gateway in terms of the
mflxl;Rz“Ivz (14) minimum SNR along the route. These topologies are used in
. ) Section IV-C.

subject to: ) v, <1fori=1,2,...M A second type of topologies are used in Section IV-B. These
e€Q topologies included the outdoor lamppost-mounted nodes

Z v, <|Cy|—1fori=1,2,.... N along with indoor infrastructure nodes. In total, 7000 rode
z€C; were placed in the city. From these nodes, a wide range of

v, € {0,1}, topologies can be formed by selecting nodes subject tougrio

conditions. Here, nodes were selected so that the network
was connected and so that each node had approximately six
ved. Th I b f -Gt | neighboring nodes with which it can communicate at 24 Mbps
resolved. Thus, a farge number o mutl.— S can result using 802.11a. This node density resulted in theflatrgraph

in significant computation. The next section finds that only I"f'aving a degree of between 15 and 20. Once the nodes were
_smaII ntl_JmIber oLmuI;u-coﬂithIanse v¥h<;r]1 f,:)_rtm'n_g Scrr‘tic:;tlfsselected, a set of gateways was selected so that the number of
In practical mesh networks. AISo, note that 1t IS Importar: gateways equals the number of nodes divided by 32. The gate-
the initial set qf ass_lgnments constructed with Algorithris 2 ways were selected such that they were uniformly distribute
free from multi-codlicts. Finally, the routing was formed by solving a mégw problem

IV. NUMERICAL EXPERIMENTS INOPTIMAL SCHEDULING that also considers an approximation of interference. This
A. Experimental Set-Up routing algorithm is similar to the one presented in [6]. For

As discussed above, determining the optimal throughput r{ggther details on forming the topologies see [16]. In thisyw

a theoretical worst-case computational complexity thakesa Opologies were made with 64, 128, 256, 512, 768, 1024, and

X . 2048 nodes. In order to further investigate the computation
computing throughput intractable for even small network: u Investig puatl

However, the theoretical worst-case performance rovid%'%mplexity, Section [V-B2 also uses a similar set of topaeg
' P b 6t where the initial set of nodes were uniformly distrilalite

little insight into the typical computational complexitjat . i . i
occurs in mesh networks. Thus, it is imperative that the cor%[ld either the two-ray propagation motelr the two-ray

utational complexity be examined in realistic mesh neksior with lognormal shadowing propagation model is used. The
b plexity lognormal shadowing used a standard deviation of 4 dB [48].

To this end, the UDel Models [17] were employed. Along W'trlEor each number of nodes and propagation model, 40 sample

a r_eahstlc mOt?"'.ty S|mulator_, the_UDeI Models include almnatopologies were generated. In all, 840 of this type of togiEe
builder, a realistic propagation simulator, and largeeszibn were generated

of data and trace files. The propagation simulator is base : .
. X ote that since we only communicate between gateways
on ray-tracing and accounts forfiections off of the ground . . .
and wireless routers, the topologies are forests (i.es, akt

3:;ftja?:ftfi:r]: Zﬂgﬂ':gsér::jagsvﬂszﬁr ditrk]‘ézu%]bu|ltldgfowf(f£m ttrees). Thus, ifNV is the total number of nodes, ard is the
for the impact that different materials have offie@etions off number of gateways, theh = N — G is the number of links.

o Finally, 802.11a data rates were used. Specifically, foh eac
of walls and transmission through walls. Data sets for sgver. : .

. . ink, the propagation model was used to determine the SNR
urban areas are available online.

. We selected the nominal data rate so that the 802.11a physica

welzrgri:]r\]/l:sltriNZtségagzg’ é\l’;(;;ygfe; o:)lr(r; eiser; Uve;\évog(ntgrg&gﬁayer is able to successfully transmit a 1000B packet wiih th
9 ' polog 9 SNR with probability 0.99. The specific relationship betwee

6x6 city block regions of downtown Chicago with lamppost; .

mounte):j radios. ?n this case, the UDel Mgdels were Fl)JF;ed <’)\|R and bit-rate used was

determine the signal strength between nodes. Tké 6ity 6Mbps<= 2.5 dB; 12Mbps < 5.5 dB;

block regions were randomly located in the 2 %kmegion. 18Mbps <= 8.5 dB; 24Mbps <= 11.5 dB;
Various nodes densities were investigated. Specificafly, t

number of gatewayswas 1, 2, 3, 6 and tge numbgr of Wire’i,ess 36Mbps <= 14.5 dB; 48Mbps > 18.5 dB;

routers was 18, 36, 54, 72, and 90. Ten samples were made for 54Mbps <> 20.5 dB.

each number of gateways and wireless routers (200 topalogie3W

in total). In these experiments, all traffitowed from the cﬁaiiiﬂi?nt?%?zefﬁftsnﬂaioﬁvsfeaiasK”;%tﬁzri dib%"re dthf gg%‘:f

gateways to destinations (i.e., downstream traffic), wea@h where x = (\/ (47))% and X = 5.8 cm, which is the wavelength at 5.13
GHz.
2Gateways are nodes that have wired and wireless interfambpravide 4We assumed 18dBm transmit power and a nfiiser of -92.5 dBm, when
a connection between the wireless mesh and the Internet. the noise factor is included.

whereC; is theith multi-corflict.
Note that each time a multi-céiict is found, (14) must be
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Fig. 1. Variation in the computed capacity as assignmemtsadded. In (a) Fig, 2.  Number of iterations until Algorithm 1 stopped. In) @(f) =
the capacity is the total utility, i.e3" .4 log(fe). In (b) the capacity is > sea log(fs) andp = 0.15 In (b) G(f) = mingeq fs andp = 0.05.
minges fy. These plots are for a 10%4 node (992 link) topology.

) ] roblems for a smallsets of variables is well known, and
We assume that the above relationship between SNR and Eg'nce the complexity of solving (2) is not investigated here
rate also holds for SINR, e.g.,, BINR = 11.5 dB, then a 2 Tjmeto Computea MWIS While Algorithm 1 converges
data rate oR4Mbps results in a packet success probability ofser (L) iterations, each iteration requires solving (14),
0.99. which has complexity that is no less than the complexity
Clearly, there are wide range of parameters used to dertﬂesolving a MWIS problem. As mentioned above, in the
the topology and the bit-rates. An investigation of the compyorst-case, the MWIS is NP-complete. In order to explore
tational complexity and computed throughput as a function gy computational complexity in practical networks, Figdr

these parameters is currently under way. shows the average time to find a new assignment for topologies
with between 64 and 2048 nodes and for three types of prop-
B. Results from Numerical Experiments agation, namely using a ray-tracing-based urban propagati

model, the two-ray propagation model, and the two-ray with
1 shows how, in the 1024 node (992 Iink) topology, tiPInomal shadowing propagation model. These fmes were
. . PeD Jo
throughput increases as the more assignments are added. ?He . .
. . : averaged over each topology sample and over each iteration
point of maximum throughput occurs when the solution t8f Algorithm 1. In the case of Figure 3, each point is from

the ILP (11) does not satisfy (6) or the stopping CondltloQveraging over 40 topology samples (840 topologies in)total

specified in Algorithm 1 is met. Thus, in this case, Algorithn&igure 3 also shows the 95% confidence intervals.

1 stopped after 186 iterations when the throughput metri wa Figure 3 clearly shows that the time to compute new

G(f) = > 4calog(fy), and after 191 iterations when the___. : -
throughput metric was (£) — mingea f,. When G (£) — assignments is quite small, e.g., for a 2048 node network,

. L B : it takes only one second. Figure 3 also indicates that the
%ﬁfﬁé%% (SJ; ¢)0’Gth(ef)5toprilizg CO?dl\t/:/Oenul;ZZi_ 0615’5’ Vl\ilhclltz computation time grows polynomially with the number of

that since the objective functions are different, the valoio I!nks. .Wh"e a detailed examlnatlop of the typ|_c al compiatat
time is beyond the scope of this paper, Figure 3 strongly
should not be compared.

. . . indicates that finding new assignments is not computatipnal
As can be observed, the number of iterations is appro 9 9 putalp

L : : Yitficult in practical networks.
m?‘te'y the_sa”.‘e for both ob_jectlve functions. Figure 2 exgsio It should be noted that the computation times shown in Fig-
this behavior in more detail and shows the average numtzﬁ

. . : & 3 were found with a PC with a two 3.0GHz Intel quadcore
of iterations over 40 topology samples. Again, the numb

f iterati . imately th for both obi t.\ﬁFocessors with 16GB ram. However, each computation only
ot lerations IS approximately the same for both ObJECIVEsey 5 single core. Also, CPLEX v10 was used. Other integer
functions. Moreover, since the log-log scale is used, Eigu

2 indicates the number of iterations increases polynowial gsaisprogrammmg solvers may give dramatically differen
with the number of links. Note that Figure _2 only shows the 3) The Number of Multi-Confficts. As mentioned in Section
case ofG (f) = 3 ycqlog(fy) for topologies up to 1024, = iy order for the throughput found by solving (2) to
nodes. Due to numerical difficulties, we were not ablg toesoIYnaltch the actual throughput when the schedule is deployed,
(2) for 2048 nodes even for a small number of assignmentg,, assignments used in the schedule must not have any multi-
Thus, we conclude that \.Nhe@(f.) — Z¢6<I>log_(f¢)' the conflicts. The scheme discussed in Section IlI-F can be used to
com_putanonal k_JottIene_ck IS nOF f|_nd|r_19 new assignments, t?émove the multi-coflicts. However, each time a multi-cfict
solving the basic nonllneqr Opt'mlzfat'on (2). , .is detected and removed, an ILP problem (14) must be solved,
Note that on]y one assignment Is added.at each 'terat'?Hcreasing the overall computation time. Figure 4 shows the
Thus, the maximum number of elementsinis the number verage number of multi-céiicts found (and removed) for
of assignments found in Algorithm 2 plus the number Q? rious sizes of networks. Roughly, the number of multi-

iterations required by Algorithm 1. Hence, we have achiev% nicts grows with the number of nodes and the number

the goa_1| of determil_wing the solution to (2) fof = V by of gateways. Comparing Figure 4 to Figure 2 we observe that
computing the solution to (2) for a small skt Note that

the complexity of solving linear and nonlinear optimizatio 5By small, we mean much less that.

1) Number of Iterations until Algorithm 1 Sops: Figure
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10
rate (1000 B packets were used). The sending rate was atljuste
D until the maximum ofminges f, Was found. Confidence
10 intervals were generated via bootstrapping [49] to enshae t

the estimated throughput was accurate within 10%.
Figure 6 shows that for networks with a large number of
gateways, optimal scheduling can have a dramatic improve-
10 ] ment in the throughput. On the other hand, the simulations
used a standard version of 802.11 CSMA/CA. It is conceivable
that if 802.11 is better tuned (e.g., by tuning CCA [50]) and
‘ ‘ ‘ ‘ ‘ a better version of the ARF is used, then the throughput with
64 128 256 512 1024 2048 802.11 CSMAI/CA could be improved and the relative im-
, Number of Nodes provement provided by optimal scheduling would be reduced.
g;g)blf)'gi se e aerage number of multh-dints detected and removed for_ Figure 6 provides a baseline for the range of improvement
in throughput that optimal scheduling can achieve. Whils it

expected that scheduling results in a higher throughpetiéa

the number of multi-coflicts is much smaller than the totalgree of the improvement and the dependence on the topology
number of iterations. On the other hand, failing to remoJeas been unknown. Figure 6 indicates when there are a large
multi-conflicts can severely impact the throughput when theumber of gateways, scheduling tends to provide tremendous
schedule is deployed. improvements in throughput over 802.11 with CSMA/CA.
4) Time to Perform Clique Decomposition: As discussed The scale of this improvement motivates further research on
in Section IlI-E, the time to find a new assignment is great§cheduling for networks with many gateways and perhaps
reduced if a clique decomposition is performed first. FigaireSUPPOrts the extra cost required to deploy hardware capable
shows that the time required to perform this decomposition @f performing scheduled transmissions. For example, ikggro
on the order to the time it takes to perform one iteration #fents of this size are large enough that optimal scheduling
Algorithm 1. Since Algorithm 1 requires that tens or hundredVill likely still provide considerably higher throughputhen
of iterations are performed, the time to compute a singtpueli factors like overhead and errors due to synchronization are
decomposition is negligible. However, we do not recompufiecounted for and CSMA/CA is well tuned.

the C”que decomposition every time a multi-€act is found. On the other hand, Figure 6 indicates pOtential difficulties
with improving the throughput on networks with few gate-

. ) ways. For example, [6] developed a scheme that achieves
C. Comparison with 802.11 CSMA/CA at least 1/3 of the optimal throughput (under the condition
With the ability to compute optimal schedules, the imthat co-channel interference does not arise). Figure et
pact of optimal schedules on the throughput as comparedif{@t such a scheme will only slightly improve the throughput
802.11 with CSMA/CA can be investigated. Figure 6 ShOV\(ﬁ] networks with a small number of gateways. However,

the ratio of the optimal throughput to the throughput thagprovements of that size might also be possible by tuning
802.11 CSMA/CA can achieve. Here the throughput metrigsmA/CA.

is mingea f4. Qualnet was used to estimate the throughput

of 802.11. RTS/CTS and Qualnet's automatic rate fallback V. CONCLUSIONS
scheme were usédThe 802.11 CSMA/CA throughput was
determined by sending data to each destination at a cons

Mean Number of Multi-Conflicts

10"

This paper presented practical techniques for computing

tt%ﬁmal schedules in multihop wireless networks even when
6In Qualnet v3.95, by default packets larger than OB use RTS/Gome co-phannel 'nterferenlce_ arises. Th? algorithms can CCEmPUt

vendors suggest disabling RTS/CTS. optimal schedules within a few minutes for networks with



©1GW-4-2GWs=-3GWs  6GWs Now it is shown that)’ can be selected so that has
12 less thanZ + 1 elements. Suppose otherwise, that &,
has exactlyL + 1 elements, and)’ is the smallest set
such that the optimal schedule is@ ({R (v,:) : v € V'}),
the convex hull of{R(v,:):v € V'}. Since the faces of

| Co({R(v,:): veV'}) are defined by no more thah ex-
/\A\A/A | treme points, the assumption that the optimal bit-ratesaan
be specified by points implies that the optimal bit-rates must
e\e/e———e\o ] be in the interior ofCo ({R (v,:) : v € V'}). That is, there is
an open set that contains the optimal point and this opers set i
: ‘ : : in the interior ofCo ({R (v,:) : v € V'}). For example, letting
20 um  Links (ggstinatioﬁg) r** be the vector of optimal bit-rates, the/vectdf‘ +ert is
Fig. 6. Comparison between optimal scheduling and 802. irieish networks glso in the interior _OfCO ({R (v.2) : v eV, WhereE_ >0
covering 6<6 block regions of downtown Chicago. is small enough. Since** is the optimal vector of bit-rates
over the interior ofCo ({R (v,:) : v € V'}), the utility of r**

must be higher than the utility af** 4+ er**. However, this
2048 nodes and within a few seconds for networks with 128 a contradiction since the link bit-rat@$* + er** result in

Optimal Capacit
802.11 Capacity
<)) fo¢] '8

N

nodes. uniformly large flow rates thanc**, which will increase the
The performance improvement provided by the optim#ihroughput. Hence/’ can be selected to have fewer tham 1
scheduling is significant if there are a large number @lements. ]

gateways. For example, as compared to 802.11's CSMA/CA, Proof of Theorem 2 and 3: The relevant Lagrange
optimal scheduling improves performance by a factor betwetinction is

3 and 11, with the improvement increasing as the density of
gateways increases. L(f,a,p, \) == wylog (f4) + A (Z oy — 1>
There are a wide range of computational issues that have D vey
yet to be explored. Specific issues to be studied include the L
impact of the initial set of assignments and techniqueslecse + Z [h, Z fo— Z owR(v,z) | . (15)
the modulation scheme. Issues related to the link layeh suc z=1 {p:z€P(¢)} vey
as whether and how retransmissions are used, can be foungdi[n . . L
[15] er some manipulation, the dual function is found to be
a(p ) = inf = log (fo)ws =\ (16)
VI. APPENDIX PED
L L
A. Proof of Theorems 1, 2, 3 and 4 +Zﬂw Z fo— Z ay (ZR(V’:B) sy — A) '
The proofs here are based on the throughput mét(f) = z=1  {$p:z€P(¢)} vev z=1

> sca Wolog (fs). Thus, to simplify the notation, only a . . L
single path routing is considered. The extension to muhipa/Ve immediately note that ib_,_, R (v, ) i, — A > 0 for
and other throughput metrics is straightforward. somez, theng (u, A) = —oo. Hence, we restrict the domain

L
Proof of Theorem 1: The optimal average data rate®f ¢ 0 be such thab /', R(v,z)pu, — A < 0. On the
over each link is a convex sum of the links rates frorfther hand, when solving the dual problem, an objective is to

different assignments, that is, the optimal bit-rate ok & maximize ¢ with respect to\. It is equivalent to minimizing
: X ! . dof - X over the domairy*_, R (v,z)u, — A < 0. Thus
is > oy atR(v,z), wherea* defines the optimal schedule. z=1 2 L) Mg = '

vey —v
In other words, the set of feasible link bit-rates is a convex L
set where the extreme points are some of the rowskof A= max R(v,z) u,, a7)
Obviously, the vector of optimal link rates is the vector veY o=

>vey @ R (v,:) € RE, the space of vectors with elements. proving Proposition 2. Furthermore, for this\, the
Due to Caratheodory’s Theorem (e.g., Theorem B.6 in [23)7" R (v,2)u, — A < 0 for v ¢ V*, thus, the infimum

a point within a convex hull inR* is specified by at most in (16) must haver, = 0 for v ¢ V*, proving Proposition 3.

L+1 extreme points. That is, there exists a 3&twith L +1 ]
elements such that Therefore, we can rewrite the dual function as,
* N — / . — 3 _
Y aR(v,:) =Y A R(v,1), a(u) = jnf = > 1og (f5) wy (18)
vey vey! ped
wherea’ might be different set of weights from*. Hence, L L
the optimal link bit-rates found by optimizing ov&t, the set + Z“r Z fo - E{?ﬁ}ZR (v, ) g
of all possible assignments, can be achieved by only usiag th v=t A{gweP(@)} e=t

set of assignmentg’. Thus, the resulting utility is unchangedwherea, has been eliminated sineé results in the infimum
whenV’ is used as opposed . being achieved foty, = 0.



Proof of Theorem 4: We slightly modify (2) to Algorithm 3
. 1: Select an initial set of assignment%0), setk = 0.
min G (f) 2: Find p(k) and A(k), the solutions to (22) fov = V(k).
subject to: Z fo— Z ayR(v,z) < p, 3: Find v(k) = arg max, 5 Zle g (k) R(v,z) — A(k).
{omeP(9)} VeV a it o8 pg (k) R(v(K)) — (k) <0, then

Y ay—1=A4, Stop
vey 5: else
S0 (2) is the case where = 0 and A = 0. We will denote SetV(k+1) = V(k + 1)) UvT (k) Go to Step 2
the value of the optimal solution of the above problem ag: €nd if
G* (p, A). From sensitivity analysis (e.g., [23]), we have
. aG* (p, A
= A (19)
Pa g(p,A) = Xand h(p) = > p,B, — 1, then (22)
oo 96 (p4) (20) s the dual of (2) whenG (f) = mingeq f;. On the
0A - - _ -1
other hand, ifg(u,\) = > sea log Sora P

Equation (19), implies that if the amount of bit-rate that is~j, 1 @
applied to linkz is increased by a small amount then the Z~=1/z 2 {gweP(9)} Syers) by Aandh(p) = 0, then
total utility will increase byye. It is critical to note that in (22) is the dual of (2) withG/ (f) = >_,cq log (f4). Thus the
this analysis, the bit-rate applied to linkdoes not come at following theorem applies to both cases.

the expense of bit-rates of other links. Theorem 11: The sequence{ (i (n),\(n))|n =0,1,...}
Now consider the multiplier\”. The constrainp .., o = given by Algorithm 3 converges to the optimal solution. Thus
1+ A can be interpreted as the allowing the total bandwidmgorithm 1 converges to the optimal solution.
of size1 + A to be shared among all assignments. Thus, if ]
the bandwidth is increased from sizeto sizel + ¢, then Lemma 12. Assume thaty (f).: 2 pca 108 (fo). Then the
the utility will increase bye. Similarly, if the bandwidth is SEt( (), A(n))In=1,2,...} is a bounded set.
decreased by, then the utility will decrease bye. Proof: We first get a lower bound on the optimal value
While the analysis above assumed that the extra bandwi@fhG (f). Let v, be the assignment where link is active
is allocated to linkz without impacting the bit-rate of the individually. Set f = ming mingcp(y) &%. ThenG =
other links, we now consider the more relevant proble@:(b@k)g (i) is a lower bound orG (f (cc)). Let r* be the
where this extra assignment comes at the expense of othgiximum data rate over any link. Th&n = S peo log (1)
links. Specifically, if we allocate assignment" with ¢ of s an upper bound o6 (f (c0)). Thus, for aflow §, we must
the bandwidth, then the total bandwidth allocated to theye thatG < log (f3) + Ypeanplog (r*). Hence f5 >
other assignments must be decreasedebyin particular, . . . .
let V' = {vi,..vy} and when optimizing over the set of P (Q_ 2peaglog (r ))' Since fg =1/ .cp() 1z and
assignmenty”, !et the associated optimal bar)\gwidth allocated* > 0, we havepu: < 1/exp (Q - Z¢eq>\9 log (r*)),
to v; be of size«}, where, of course) .' ;o = L
Now in order to allocate bandwidth to assignmentvt, . .
we adjust the allocation to.} = (1 —¢)af, and hence the A = L7 /exp (G = Xperplog () ). u
assignment§v™t, vy, vy, ..., vy} are allocated bandwidths of | emma 13: Assume thats (f) = minge (f). Then the set
width {e, (1 —¢) af, (1 —¢) a3, ..., (1 — &) ay }, respectively. {(u(n), A (n))|n=1,2,..} is a bounded set.
Based on the discussion above, the change in utility is L .
Proof: Let " ,p:8, = F* < r* wherer* is the

L . .
y maximum data rate over any link. Thug, < r*/3,.Also,
5<ZR(V+,x)%A>, (1) e <, v »
x=1
Proof of Theorem 11: Since
{(g(n),A(n)):n=1,2,..} is a bounded sequence,
there exists a convergent subsequence. Thus, assume that
{(r(nj),A(n;)):5=1,2,..} is such a sequence and

Moreover, sincey">_, R (v,z) u% = \*, we must have that

which is positive if (6) holds. ]

B. Proof of Theorem 6

Consider the problem limj oo (£ (), A(n;)) = (p/,X'). Define a sequence of
man(u,)\)L (22)  sets of assignmenty (nj) == V(0) U [Jv (). We wil
] i=1
subject to Y " R(v,z)u, < AforallveV show that>>> | R(v,z)p, < X for v € V(n). To this
e=1 ) — 0 end defineu (p, \) = max, .y > r_, R(v,2) py — \. It is
(1) = straightforward to check that is a continuous function. Also,
and Algorithm 3 for solving this problem withy =V. u(p(ng), A(ny) = b R(v(ng), @)y (ng) — A(ny),

This problem is the dual of (2) for either objectiveand since) (n;) isincreasinginj, > ., R(v,z)p,—X <0
function by correctly definingg and h. Specifically, if for all v € V(n;) for all j. Therefore, the following string



holds

IA

R(v(n;), ) (1 (ny) = ) = (A (ny) = X))
+(u (X)) = u (e (), A (ng)))) -

Since the entries oR are bounded and sineeis continuous,
the right-hand side converges to zerojas- oco. Therefore,
u((w,X)) <0.

Note that g ((¢t (n;),A(n;))) is a nondecreasing func-
tion (since more constraints are added at each

tion) and g (g (1), A (15))) < g((p(20) , A(0))), where
(p (00), A (00)) is the solution to (22) fon) = V. Sinceg
is continuous Jim; . g (1 (1), A (n;))) = g (1, N')) <
g ((1(00),A(00))). Thus (p',X') solves (22) fory = V.
And hence, (p/,\') solves the dual of (22), which has
unigque solution, hencépu (co), A (<)) = (w/,X'). Thus,
all subsequences of(u(n),A(n)):j=1,2,..} converge
to (i, \'). Hence,lim, o (1t (n), A (n)) = (/,X). Itis
straightforward to show that {(f (n),a (n)) :n=1,2,...}

Nonetheless,
G (f(c0)) = G(f(n)) < rgggR(v,:)u(n) —A(n).
[ |

To proof the above for the case Whéh(f) = minges f3
we rewrite (2) to

min —F
Z ayR(v,z) > B, F
vey

Zavgl

vey

where g, is the number offlows that pass through link
divided by the bit-rate of linkz. Thus, with normalization,
R(v,z) € {0,1}.
Theorem 15: Let G (f) = minges fy, then forf (n) found
by Algorithm 1G (f (c0)) — G (f (n)) < A (n)
Proof: The dual of (2) withy =V is

(23)
subject to:

min A
—MforallveV
1.

—R(v,))p

> B

>
>

itefote that (u (n), max,cyp R(v,:)p(n)) is a feasible (but

not optimal) solution to the dual of the full problem.
Thus, G (f (00)) < max,ep R(v,:) p(n) and G (f (00)) —
G(f(n) Smax,ep R(v,:)p(n) =G (f(n)) =A(n). =

Theorem 9 follows from Theorems 14 and 15. We now focus
zon proving Theorem 7. To this end, the following lemmas are

proved.
Lemma 16: AX(n) > R(v,:)Ap(n) for all v # v(n)
andv e V*(n+1)

Proof: From the identity, A (n) =

is the sequence of solutions to the primal problems &&Xvev(m) B(v,:)p(n) = R(v,:)u(n) for v c V*(n),

Algorithm 1, thenlim,,_,o. (f (n),a(n)) = (f (00) , @ (0)),
which is the optimal solution to the primal problem. =

C. Proof of Theorems 7 and 9

Define A(n) = argmax,cp R (v,:) n(n) — A\(n). Define
f(n) to be the vector offlow rates found during the:th
iteration of Algorithm 1 and leif(oco) := lim,, .o f(n). Thus
G (f (n)) to be the optimal value of (2) after theth iteration.

And let G (f (o00)) be the solution to the full problem. Define

Al =A(n+1)—A(n)andApu(n) =pu(n+1) — pu(n).
Let v (n) = argmax,cp R (v,:) p(n). That is, v (n) is the
assignment added at theh iteration.
Theorem 14: Let G (f) = ) ,.410g(fs), then for f (n)
found by Algorithm 1G (f (00)) — G (f (n)) < A (n).
Proof: The dual of (2) is
PIEDD

max min — Z log (fs) +
¢ T {¢:weP()}

subject oY " R (v,z)u, < AforallveV.

fo—A

Then as above,(p (n) , max,cp R (v,:) u(n))) is a feasible
(but not optimal) solution to the dual of the full problem

we have forv € V* (n+1) andv # v (n)

Aln+1)—=A(n)
R(v,)p(n+1) - VIQ%)R(W D) p(n)

R(v,)p(n+1)—R(v,:)p(n).

>

[
Lemma 17: AX(n) = R(v(n),:) Ap(n) + A(n)

Proof: The newly added assignment,(n), is always
an active assignment in the schedule found innthe 1)th
iteration, i.e.,v(n) € V*(n+1). Thus, A(n+1)
R(v(n),:)p(n+1). From the definition ofA (n), we have
“A(n) = =R(v(n),)pu(n) + A(n). Thus, \(n+1) —
An) = R(v(n),)p(n+1) = R(v(n),:) p(n) + An).

[

Lemma 18: 87 Ap (n) = 0.
Proof: The Lagrangian for (23) is

—F+ Zuw (,BxF - ZavR (v,x))
+A (Z Qy — 1) .

L(p,\ o, F)



Since F' appears linearly, for the optimal value pfwe must On the other hand, by Theorem 16,(f (0)) — G (f (n)) <
have that-1+ 3", 3,1, = 0. Thus, for alln, 3" p(n) =1, A (n). Therefore, we have

and henceg8” Ay ( n) = 0. u G(f(n+1))—G(f(n)

Note that the set of active assignmemts(n + 1) and the G (%)) — G (F () >0
corresponding matrix of data-rates must be schedulableein t
sense that sufficient data musow on each link. This gives (G(f(0) = G(f(n) = (G(f(0) ~GE(n+1) _ &
rise to following condition orV* (n + 1) and R. G (f(00)) =G (f(n)) -

Condition 19: There exists a vector a  Wwith L (GE(x) -GEMn+L)
> vev(ni1) @ =l anday >0 for all v € V* (n + 1) such G(f(0)—-G(f(n) ~
that there exists a> 0 such that (G(f(00) =G (f(n+1)))

<1l-6<1.
aR(:,z) > 18, for all z. (24) G (f(c0)) = G(f(n))

[ |
Note that in practice, numerical errors limit the accuraty o
the solutions. These errors resultGh(f (o00)) — G (f (n + 1))
approaching zero slowly for large. Thus, if Arpreshold
is very small, it may take many iterations befafe(n) <
AThreshold- ThUuS, Arhreshota Should not be to small. While
further research is required to understand the source and

Lemma 20: There exists & > 0 that is independent of
V* (n + 1) such thatma‘XvEV*(n-l-l)\v(n) R (Vv :) A:u' (n) >
—qR(v(n),:) Ap(n).

Proof: Multiplying both sides of (24) byApu, (n) and
summing results in

S Ap,(n) D ayR(v,) =ty B,Au, (n) impact of numerical errors, we suspect that errors in cHanne
vev*(ntl) z=1 gain measurements and node synchronization result in more
and from Lemma 18, we have significant reduction in actual throughput than using adarg
value of Apreshold-
> e Au () R(v,a)
VeV (ntl\v(n) @ D. Proof of Theorem 8
+avm Ay (n) R(v (1), ) > 0. Lemma 22 |[u(n+1)— ()| > §[A(n+1)— ()
Thus, for somed > 0.
Proof: Recall that\ (n) = maxyey(,) R (v,:) p(n) and
R(v,:)Ap(n) for v.e V*(n) we havel(n) = R(v,:)u(n). Let v/ €

max
vEV* (n+1)\v(n) V*(n+1)NV(n). Then

> ~4(R,B) R(v (n) %) Ap, (1)
. RV, )pn+1) =R, )pun) = A(n+1) = X(n).

whereq (R, 3) > 0 is a constant that depends on the vector
a given by Condition 19, and hence depends on the mat®nce R(v',z) € {0,1}, there exists anz such
of active assignments* (n + 1) and the vectod. The set of that p, (n+1) — p, (n ( ) > +(A(n+1)—A(n), and
active assignments is in the set® L) where [ (n+1) = p@) > £ [(A(n+1) = X(n))|. u

Lemma 23: Let A € {o X with A(¢,2) =1if 2 €
P (¢) and A (¢, z) = 0 otherwise. Suppose that the null space
where s is the number of active assignments, amnd< ©f 4 iS empty. Them (¢,:) u = 1/f, and there exists &> 0
L. Clearly, (8,L) is a compact set (actually, it is a fi-SUch thatlf (n) —f(n + 1| > dlp (n) — p (n + 1)]].
nite set). Hence, there existsqa:= minpey(s.1) q (R, B) Proof: Since the null space ofA is empty,

whereq > 0 and thusmaxy ey« (ns1)\v(n) B (V,:) Ap (n) > all the singular values 1/02fA are nonzero. Thus,

V(B8,L) {{0 1}**%| s < L, Condition 19 hold}

—qAp, (n) R(v (n),z) forany V* (n+1) eV(5, L). [ 11 S 1 k) — (k+ 1),
Lemma 21: AX(n) > §A (n) for somed > 0. 2pe _<f¢(’“) f¢’(k’+1)>_ = gl (k) = p :
Proof: From Lemmas 16, 17, and 20 whereg is the smallest singular value of.
Recall that the proof of Lemma 12 showed that there exists
AX(n) = ey fax. )R(V,i)AM (n) a f such thatfs (n) > f for all n and ¢. Direct calcula-
> —qR(v(n),:) A (n) tion shows that f, (n) — fo (n + 1) 2 1 | 7565 ~ Fteemy |
= (A ()= AA()) Thus, £ () = £ (n+ 1) > L lu(k) —p(k+ 1)) m
AX(n)(1+q) > qA(n) Combining the previous lemmas we get the following.
A < N Lemma 24: If the assumption of Lemma
() 2 740 23 holds, then |f(n)—f(n+1)] >

m e +1),A(n+1)) = (u(n),A(n))| for somes > 0.

Proof of Theorem 7: Since there is no duality gap,  roof of Theorem & ‘Define u(p,\) =

L
A(n) = G (f (n)). Thus, from Lemma 21 max, cp ),y R(\_/,x)um - A Let (u(0) A (0))
be the multipliers that result from solving (2)
G(f(n+1))—G(f(n)) -

A (n) - “This proof is based on a proof in [51].




with VY

{v: Vo = 1 for exact oner}. Let

Ao = max, .y Zx 1 R(v,2) p, (0). Then,

w((p(0),2X,)) —MX,. Thus, for eachn, there exists
v (n) € 10,1] such that

0=u(y(n)(pn),A(n)+ -~
From (25),

0 = u(y(n)(p(n),A(n)+ 1 —7(n)(k0),2X))
< y(Mu(pn),A(n) + (1 =7 (n)u(m0),2X),

where the inequality is implied by the convexity @f There-
fore,

(n)) (1(0),2X)) -

(25)

w(pp(n) A (n) > %um(oxm.

Sincev (n) € V*(n+1), we haveR (v(n),:)u(n+1) —

A(n+1) = 0. Also, u((p(n),A(n))) =
R(v(n),:)u(n+1)—A(n+1). Therefore,
7mu(u(0) 20)
v (n) T
< u(p(n),A(n)
= R(v(n),:)p(n)—A(n)
—(B(v(n),)p(n+1)=A(n+1))
= R(v(n),)(pmn)—ph+1)—An)-Aln+1))
< e (n+1), (0 +1)) = (), A0,

wherer* is the highest data rate across any link, and henc® (n + 1)

R (v,z) < r*. From the above and Lemma 24 we have
§(1—v(n))
f(n)—f(n+1 > — u 0),2X,
£ (n) — £ (n+ 1) porn) (1 (0),2X,)

> —0(1=v(n))u(p(0),2X)
for somed > 0. Or
[f(n) —f(n+ 1)

(I=7() = =5 .20

Corresponding to the poir{iu (0) ,2),), defineflow rates

f where fqb T Taerio) H(O)

is suboptimal but feaS|bIe Similarly,(n) is suboptimal but
feasible. Hencey (n)f (n) + (1 — v (n)) f is suboptimal but
feasible. Therefore,

~G(£(o0) £ =G (y() £ (n) + (1 =y () F) ,
wheref (c0) is the vector of optimafiow rates. Then
(~G (£ (00)) = (G (£ (n)) 27)
(-G (v ) + (1 =y ) F)) = (-G (£ )
Ky )£+ 1=y () E-£
Hf(n) ~ i,

(26)

IA

IA

K(1=v(n))

where K = MaXee (] r<f, <o } VG (f)|| and VG (f) is the
gradient ofG atf and f is the lower bound on thBow rates
given in Lemma 12.

Clearly, this set of data rates

Combining (26) and (27) yields,

(—G(f(;;o}))—(— (f(n))) (28)
MR AR OB
Define D (n) = (—G (£ (00))) — (=G (£ (n))). Thus, (28)
implies
D(n) < Ki|f(n) —f(n+1), (29)
where K = W
On the other hand, over the doma{rf}f < f¢> <r*},

> sca 108 (fo) is a strongly convex function (see Proposition
B.5 in [23]). Thus,

D(n)=D(n+1) (30)
= (=G({f(n+1)) - (—G(f (n)))
> plf(n) — £ (n+ 1)
for somep > 0.
From (29) and (30),
D(n)? < K2 () — £ (n+ 1)) KT%(D(n)D(nJrl)),
or )
Dn+1) < D)= 15D
As shown in [52],
1 1 1
- D(n)l——Kf’—%D( )
L (o '
=~ D & (7P w)
1 p 1 p
> 5 (1 P ™) = 50t
Using induction, we have
L 7
D(n) = D(0) K}’
or ) .
D(n)§%+n_1%_n_[%.
Thus, ,
G (£ (00)) — G (£ (n)) < %i
[ |
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